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Software science is a discipline that studies the formal properties and mathematical models of soft-
ware, general methodologies for rigorous and efficient software development, and coherent theories
and laws underpinning software behaviors and software engineering practices. This paper presents
a general mathematical model of software (GMMS). It reveals that software is not only an interactive
dispatch structure at the top level driven by the trigger, timing, and interrupt events (E), but also
a set of embedded relational processes at intermediate levels of components or subsystems. The
GMMS model formally describes the abstract entities of software by structure models (SMs) and
the functional behaviors of software by process models (PMs). As a result, the overall mathematical
model of software systems (SS) is formally derived as a Cartesian product SS= E×PM ×SM for
any form and size of software systems. Case studies demonstrate that novel, rigorous, and efficient
methodologies for software engineering can be deductively developed based on the formal theories
of software science.

Keywords: Software Science, Theoretical Foundations, General Mathematical Models, Structure
Models (SMs), Process Models (PMs), System Models, Properties of Software,
Embedded Processes, Dispatch Structures, Denotational Mathematics, Formal
Methods, RTPA, Software Engineering, Applications.

1. INTRODUCTION
The nature of software is perceived quite differently in

research and practice of computing and software engi-

neering (von Neumann, 1946, 1963; Turing, 1950; Hoare,

1969, 1978; Dijkstra, 1976; Guttag, 1977; Higman, 1977;

Hopcroft and Ullman, 1979; Cries, 1981; Mandrioli and

Ghezzi, 1987; Wilson and Clark, 1988; Sommerville,

1995; Lewis and Papadimitriou, 1998; McDermid, 1991;

Louden, 1993; Wang, 2006, 2007a, 2008b, f, 2009f; Wang

and King, 2000; Wang and Patel, 2000, 2009). The con-

cept of software is used to be treated as a listing of

statements as for granted. Typical metaphors and per-

ceptions about software are such as those of mathemat-
ical entities (Turing, 1950; Milner, 1980; Bishop, 1986;

Hoare et al., 1987; Gowers, 2008; Wang, 2002, 2007a,

2008b, f), computational logic (Horn, 1951; Kowalski,

1988; Boolos, 2002), automata or finite state machines
(FSMs) (von Neumann, 1963; Hopcroft and Ullman,

1979; Lewis and Papadimitriou, 1998), algorithms (Wirth,

1976; Baase, 1978; Bjorner and Jones, 1982; Knuth,

1997; Wang, 1996, 2008c), behavioral processes (Cerone,

2000; Wang, 2003b; Wang and King, 2000), programming

language entities (Dijkstra, 1976; Higman, 1977; Gries,

1981; Horowitz, 1984; Bishop, 1986; Wilson and Clark,

1988; Louden, 1993; Wang, 2009a), program classes and
objects (Dahl and Nygaard, 1967; Meyer, 1988; Wang,

2001a; Wang and Patel, 2004; Wang and Huang, 2008;

Wang et al., 2000), application products (Gibbs, 1994;

McDermid, 1991; Sommerville, 1995; Bass et al., 1998;

Parnas, 2001; Wang, 2001b, 2005; Wang and Bryant,

2002; Wang et al., 1998, 1999a, b), instructive information
(Llewellyn, 1987; McDermid, 1991; Wang, 2006), intel-
ligent behaviors (Glorioso and Osorio, 1980; McDermid,

1991; Wang, 2003a, 2003b, 2007a, 2008d, 2009b), and

abstract systems (Milner, 1980; Klir, 1992; Wang 2007a,

2008g, h, 2014b, 2015). Despite the rich repository of

empirical knowledge on programming and software devel-

opment, a rigorous theoretical framework of software sci-

ence is yet to be sought.

Definition 1. Software is an abstract representation of

both executable computing structures as typed tuples and

instructive behaviours as a chain of embedded functions
interacting between the abstract and physical worlds.

130 J. Adv. Math. Appl. 2014, Vol. 3, No. 2 2156-7565/2014/3/130/018 doi:10.1166/jama.2014.1060
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Software is a complex system that consists of a large

set of intricately heterogeneous and interconnected com-

ponents. Changes at one point of software may affect

functions of the entire system due to propagations of inter-

action inconsistencies via highly coupled structures and

intricately interactive functions. The necessary and suffi-

cient conditions for software dependency in a system are

the needs for repeatability, programmability, and run-time
determinability, which transform a general computer plat-

form to a specific intelligent system.

Any scientific discipline studies the structures and func-

tions of an aspect of the natural or the abstract world

(Aristotle, 384 BC–322 BC; Newton, 1729; Descartes,

1979; Russell, 1903). Fundamental theories of software

science are type theories (Martin-Lof, 1975; Guttag, 1977;

Cardelli and Wegner, 1985; Mitchell, 1990; Wang, 2007a;

Wang et al., 2010e) and the process metaphor (Hoare,

1978, 1985; Miller, 1980; Wang, 2002, 2007a). The for-

mer indicate that the structural facet of software may be

formally modeled by a set of numerical types where a cat-

egory of software objects share common properties and

allowable operations. The latter reveal that the functional

facet of software may be formally described as a sin-

gle or complex behavioral process. Hoare (1978), Milner

(1980), and others developed various algebraic approaches

Yingxu Wang is professor of denotational mathematics, cognitive informatics, software

science, and brain science. He is President of International Institute of Cognitive Infor-

matics and Cognitive Computing (ICIC), Director of Laboratory for Cognitive Informatics
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CSAIL at MIT (2012), respectively. He is founding Editor-in-Chief of International Journal of Cognitive Informatics

and Natural Intelligence (IJCINI), founding Editor-in-Chief of International Journal of Software Science and Com-

putational Intelligence (IJSSCI), Associate Editor of IEEE Trans. on SMC (Systems), and Editor-in-Chief of Journal
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to represent interacting and concurrent computing sys-

tems known as communicating sequential processes (CPS)

(Hoare, 1978, 1985). Hoare and his colleagues studied

laws of programs (Hoare et al., 1987), which have recently

extended by Wang to the mathematical laws of software

systems (Wang, 2008f). The real-time process algebra

(RTPA) is developed as a denotational mathematics for

rigorously modeling and manipulating intelligent behav-

ioral processes of both software systems and humans

(Wang, 2002, 2007b, 2008a, f). A comprehensive deduc-

tive semantics of RTPA is formally described in (Wang,

2008b, 2010b). The framework of denotational mathemat-

ics may be referred to (Wang, 2008e, 2009a, 2012a, b,

d, e, 2011, 2013, 2014) towards software science, cogni-

tive informatics (Wang, 2003a, 2007b, 2009d, e, 2010a,

2012c; Wang and Chiew, 2011; Wang et al., 2006, 2009b),

and computational intelligence (Wang, 2009b, f; Wang and

Chiew, 2010).

Definition 2. Software engineering is applied software

science that adopts engineering approaches, such as estab-

lished formal methodologies, processes, measurements,

tools, standards, organizational patterns, quality assurance

systems and the like, in the development of large-scale

software towards high productivity, low cost, controllable

quality, and predictable schedule.

J. Adv. Math. Appl. 3, 130–147, 2014 131
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The nature of software engineering and its theories and

methodologies are determined by the nature of the objects

under study, software, and the needs for mathematical, the-

oretical, and methodological means. It is reported that over

2/3 complex and large-scale software projects have been

failed in the history of software engineering because the

extremely high complexity of software systems created by

a team may eventually not be able to understand by any

individual in the team (McDermid, 1991; Sommerville,

1995; Bass et al., 1998; Wang, 2007a; Wang and King,

2000). The complexity of software may easily grow out

of the intellectual manageability of an individual at any

level in a project when the system is integrated in the final

phase. A system architect may lose the cognitive ability

for pinpointing and tracing the details of system behaviors.

The programmers may lose their vision for comprehend-

ing the intricate connections and relationship of a certain

component with the remainder of the entire system. In

addition, the highly dependent interpersonal coordination

requirement may result in an extremely high rework rate

when the system design is not rigorously specified in a for-

mal and precise model. These dilemmas are identified as

key reasons of the failures in complex software develop-

ment projects (Brooks, Jr., 1975; McDermid, 1991; Parnas,

2001; Wang, 2007a), which indicates that the program-

ming approach to software engineering is insufficiently

practical, and program languages are not good at dealing

with complexity and consistency in software engineering.

It was recognized that software is not constrained by

any known physical laws and principles (Hoare et al.,

1987; Hartmanis, 1994; Wang, 2007a, 2008f, 2009f). The

fact that we are still facing the same fundamental prob-

lems in software engineering as those we have recog-

nized 50 years ago indicates an indispensable need for

software science (Hoare, 1969; McDermid, 1991; Parnas,

2001; Wang, 2007a). Although software engineering has

accumulated a rich set of empirical and heuristic princi-

ples, not all of them have been refined and formalized in

order to form coherent theories for software science.

Definition 3. Software science is a discipline that

studies the formal properties and mathematical models of

software, general methodologies for rigorous and efficient

software development, and coherent theories and laws

underpinning software behaviors and software engineering

practices.

Based on the view of software science, the empirical

discipline of software engineering may be clarified as that

of the relationship between theoretical and applied physics.

In software science, software is no longer seen as indi-

vidual and diverse applications for solving particular prob-

lems; software engineering is not merely a labor-intensive

code building activity; and software and computer sci-

entists are no longer a practitioner for solving particular

problems required by individual customers. Instead, the

problems will be treated as a whole, at most a few cat-

egories of them, based on a set of general mathematical

models and formal theories of software science.

This paper presents a general mathematical model of

software (GMMS) towards software science on the basis

of computer science, system science, information science,

and denotational mathematics. In the remainder of this

paper, Section 2 explores the theoretical discourse of soft-

ware where any software system is formally represented by

an abstract software model with sets of abstract structures,

functions, events, and their interactions in the discourse

of software. Section 3 formally represents the structure

models of software by typed tuples. Section 4 rigorously

denotes the behaviors models of software as embedded

processes at the meta, complex, and system levels based on

behavioral process algebra. Section 5 synthesizes the top

level model of software system as a general mathematical

model of interactive process dispatch systems where any

concrete software system is formally treated as a derived

instance of the GMMS model.

2. THE GENERAL MATHEMATICAL MODEL
OF SOFTWARE (GMMS)

Although there are various perceptions on programs, algo-

rithms, and software systems since the very beginning of

computer science and software engineering, the concept of

software is used to be treated as a listing of statements

as for granted without deep studies towards the discipline

of software science. This section explores the nature and

insights of software as two-dimensional abstract entities

interacting between its functions and structures. It leads to

the formal description of the discourse of software and its

general mathematical model.

2.1. The Discourse of Software
Upon the contemporary understanding about software and

its properties in computer science, software engineering,

information science, system science, cognitive computing,

and computational intelligence, the discourse of software

in software science can be rigorously introduced.

Definition 4. Let � be a finite set of variables,  a

finite set of types, � a finite set of instructions, � a finite

set of structures, � a finite set of functions, and
(
§ a finite

set of system dispatch functions. Then, the discourse of
software, �, is a 6-tuple, i.e.,:

�
∧= ����������

(
§� (1)

where the structure, function, and system of software are

generated, respectively, based on the first three primitive

attributes of � as follows:

� = �×

� = �×� (2)

(
§ = �×�×�

132 J. Adv. Math. Appl. 3, 130–147, 2014
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2.2. The Abstract Software Model
On the basis of the universal discourse of software �, the

general mathematical model of software can be derived.

Definition 5. The general mathematical model of soft-
ware (GMMS), ℘, is a 9-tuple in the discourse of software

�, i.e.,:

℘
∧= �S�P�A�F �E�§F �*�Ri�Ro� (3)

where

• S is a finite set of object structures of software ℘, S =
V ×T , V ⊂ Þ�� ℘��, T ⊂ Þ��, S ⊂ Þ� �℘� �
where V and T are sets of variables and types, respec-

tively, Þ denotes a power set, and � is called a system
enclosure where a set of components belongs to the hyper-

structured system.

• P is a finite set of behavioral processes of software ℘,

P = I×S, I ⊂ Þ���, S⊂ Þ��℘��, P ⊂ Þ� �℘��
where I is a set of instructions.

• A is a finite set of architectures of software ℘, A =
S×S, A⊂ Þ� � ℘��.

• F is a finite set of functions of software ℘, F = P ×P ,

F ⊂ Þ� � ℘� �.

• E is a finite set of events of software ℘, E = V ′ × T ′,
V ′ ⊂*⊂ Þ��℘��, T ′ ⊂ T ⊂ Þ�℘��, E ⊂ Þ��
℘ � � where V ′ represents a set of event variables, T ′ a

set of special types, T ′ = Tr� TM���, known as those of

external trigger, system timing, and device interrupt events.

• §F is a finite set of system functions, §F = E×P ×S,

§F ⊂ Þ
(
§ � �.

• * is the environment of software ℘, * = E′� S ′�, E′ ⊂
Þ���∧E′ �/ ℘, S ′ ⊂ Þ���∧S ′ �/ ℘, representing the

sets of external events E′ and external structures S ′ of

another software ℘′, ℘′ ��∧℘′ 	= ℘.

• Ri is a finite set of input relations, Ri =*×℘, * �/ ℘.

• Ro is a finite set of output relations, Ro =℘×*, *�/ ℘.

The GMMS model in the discourse of universal soft-

ware systems � provides a theoretical framework of soft-

ware science and theoretical software engineering. In the

structural facet of software, it formally describes the object

structures (S, Definition 4), events (E, Definitions 27/28),

environments (*, Definition 25), and system architectures

(A, Definition 23) by the unified structure models (SMs).

In the functional facet of software, it rigorously expresses

behavioral processes (P , Definition 16), functions (F , Def-

inition 32), system functions (§F , Definition 24), input

relations (Ri, Definition 26), and output relations (Ro, Def-

inition 26) by the unified process models (PMs) and its

interactions with the SMs of a software system. Any pro-

gram and/or software system can be formally modeled

according to Definition 5 in �. Each facet of the for-

mal model of software in GMMS will be further refined

and elaborated in the remaining sections throughout the

paper.

3. MATHEMATICAL MODELS OF SOFTWARE
OBJECT STRUCTURES—TYPED TUPLES

The GMMS model in � as created in the preceding section

indicates that the structural model of software components

is a typed tuple and the architectural model of software

system at the top level is a composition of the structure

models according to certain algebraic rules.

Definition 6. The object structure of software ℘, S, in

� is an abstract model of software objects V such as a

variable, constant, event, status, interface (port), memory,

and complex objects identified by a type in T , i.e.,:

S
∧= V ×T � V ⊂ Þ�� ℘���

T ⊂ Þ� ��

S ⊂ Þ� �℘� �

(4)

3.1. The Type Theory for Formally Modeling Object
Structures of Software

Software objects as the operands of software operators

are modeled as a finite set of variables and associated

types. A type is a set in which all member data objects

share a common logical property, domain constraints, and

allowable operations. A type system specifies the modeling

and manipulation rules of software objects (Martin-Lof,

1975; Guttag, 1977; Cardelli and Wegner, 1985; Mitchell,

1990; Wang, 2007a; Wang et al., 2010e). Types can be

classified as primitive and complex types. The former are

the most elemental types that cannot be further divided

into simpler ones; and the latter are hybrid and derived

types of multiple primitive types based on certain type

rules.

Definition 7. The primitive types of software
objects, p, encompass a set of eight fundamental types

that cannot be broken down further without losing their

logical and semantic property, i.e.,:

p

∧= {N, Z, R, S, BL, B, H, P} (5)

where each of them represents the types of natural number,
integer, real number, string, Boolean, byte, hexadecimal,
andpointer, respectively.

The primitive types of software object structures are

summarized in Table I where the notation, syntax, math-

ematical domain, language domain, and properties are

specified.

Definition 8. The complex types of software struc-
tures, c, encompass a set of ten composed types derived

based on the primitive types, i.e.,:

c

∧= � �TI�D�TM�@e�S�@t�TM�

@int����s�S�SM�PM� (6)

where each of them represents the type of arbitrary,
time, date, general time (data-time), trigger event, timing

J. Adv. Math. Appl. 3, 130–147, 2014 133
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Table I. Primitive types and domains of software objects.

No. Type Syntax Dm DI Equivalency

1 [0, +∞] [0, 65535]

2 [-∞, +∞] [-32768, +32767]

3 [-∞, +∞] [-2147483648, 2147483647]

4 [0, +∞] [0, 255]

5 [T, F] [T, F]

6 [0, 256] [0, 256]

Default arithmetic operations

Default character and string operations

Boolean constants {T|BL, F|BL}

Default binary operations

7 [0, +∞] [0, max]

8

Natural number

Integer

Real number

String

Boolean

Byte

Hexadecimal

Pointer

N

Z

R

S

BL

B

H

P [0, +∞] [0, max]

event, interrupt event, operation status, system struc-
ture model (SM), and behavioral process model (PM),

respectively.

The complex types of software objects as composed

primitive types are summarized in Table II where the

notation, syntax, mathematical domain, language domain,

and properties are specified. Among the complex types in

Table II, a pair of type prefixes @ and � are introduced to

denote an event and status, respectively, as special types of

system variables. In addition, type suffixes are adopted for

denotational convenience which are denoted by a primitive

types prefixed by ‘�’. For example, the interrupt suffix is

denoted by “��”.

Table II. Complex types and domains of software objects.

No. Type Syntax Dm Dl Equivalence

1 Arbitrary type – –

2 Time TI = 
hh:mm:ss:ms

hh: [0, 23] 
mm: [0, 59]
ss: [0, 59]
ms: [0, 999]

hh: [0, 23]
mm: [0, 59]
ss: [0, 59]
ms: [0, 999]

3 Date D =
yy:MM:dd

yy: [0, 99]
MM: [1, 12]
dd: [1, 31}

yy: [0, 99]
MM: [1, 12]
dd: [1, 31}

4 Date/Time TM =
yyyy:MM:dd:
hh:mm:ss:ms

yyyy: [0, 9999]
MM:[1, 12]
dd: [1, 31] 
hh: [0, 23] 
mm: [0, 59]
ss: [0, 59]
ms: [0, 999]

yyyy: [0, 9999]
MM: [1, 12]
dd: [1, 31]
hh: [0, 23]
mm: [0, 59]
ss: [0, 59]
ms: [0, 999]

5 Trigger event e|S [0, +∞] [0, 255]

6 Timing event t|TM [0|ms, 9999 |yyyy] [0|ms, 9999 |yyyy]

7 Interrupt event int| [0, 1023] [0, 1023]

8 Operational status s|BL [T, F] [T, F]

9 System structure SM – –

10 System process model PM – –

Any dummy type determined at run-time

Default time manipulations

Default system event capture and
dispatch

Default Boolean operations

Default field reference: x|SM.y|

Default process schema (Def. 23):
P|SM (<I|SM>, <O|SM>, <M|SM>)

Definition 9. The type suffix convention is a denota-

tional scheme to explicitly identify any software objects

o�x� such as variables, constants, events, status, structures,

processes, and behaviors by an associated type � in both

declaration and invocation, i.e.,:⎧⎨
⎩

Declaration: o�x�
∧= x � � �� ∈p ∪c

Invocation: o�x�
∧= x�� �� ∈p ∪c

(7)

A formal type system is a collection of all type rules in

�. A type rule is a mathematical relation and constraint

on a given type. Type rules are defined on the basis of a

type environment.

134 J. Adv. Math. Appl. 3, 130–147, 2014
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Definition 10. The type environment *t of software in

� is a collection of all formal primitive and complex types

as specified in Tables I and II, i.e.,:

*t

∧= p ∪c

= {N, Z, R, S, BL, B, H, P}

∪ � �TI�D�TM�@e�S�@t�TM�

@int����s�S�SM�PM�

(8)

The central principle of type theory is that the domains

of types can be classified into those of mathematical Dm,

language defined Dl, and problem constrained Dp domains

as shown in Tables I and II.

Theorem 1. The domain constraint of software objects
states that the following relationship between the domains
of abstract types and concrete software objects is always
held, i.e.,:

Dp ⊆Dl ⊆Dm (9)

Proof. The relationships between the three domains of

types are expressed in Eq. (10). For any given problem,

because of the constraints on both the language domain kl

and the mathematical domain km cannot greater than one,

Theorem 1 holds, i.e.,:

Dp = klDl = klkmDm� kl� km ≤ 1

⇒ Dp ⊆Dl ⊆Dm �
(10)

Empirically, for all primitive types as defined in Table I,

Dp ⊂ Dl ⊂ Dm; while for all complex types as defined

in Table II, Dp = Dl = Dm. Therefore, both categories of

types obey the general domain constraints according to

Theorem 1.

It is noteworthy that, although a generic specification of

a software object is constrained by Dm, the executable pro-

gram that embodies the specification is constrained by Dl.

Then it is further restricted by the problem domain Dp,

which is always a subset of Dl and Dm in order to reserve

code and mathematical consistencies. Therefore, any struc-

tural object of software is constrained by the problem

domain specified in given problem requirements.

Corollary 1. The precedence of domain determination
and type refinement in software object modeling is con-
strained by the following order:

Dp ⇒Dl ⇒Dm (11)

Although the mathematical domain Dm is the basis

of system design in the phases of conceptual model-

ing, requirements analysis, and specification, the language

domain Dl constrains system implementation on a certain

platform and programming language. The problem domain

Dp mainly constrains different instances of the system at

run-time.

3.2. The Big-R Notation for Recurring Structures and
Iterative Behaviors of Software

Iterative and recursive structures and behaviors are the

most fundamental and essential mechanisms of software

and computing, which make programs more efficient and

expressive. However, the iterative and recursive constructs

of software are the most diverse and confusable instruc-

tions in programming at both syntactic and semantic lev-

els. The big-R notation (Wang, 2008c) is introduced to

provide a unified and expressive treatment of iterations and

recursions for rigorously modeling both recurring struc-

tures and iterative behaviors of software.

Definition 11. The big-R notation is a mathematical

operator for denoting:

(a) a finite set of repetitive object structures of software;

and/or

(b) a finite set of iterative or recursive behavioral pro-

cesses, i.e.,:

(a)

n

R
i=1

S�i��SM (12a)

(b)

n

R
i=1

P�i��PM (12b)

The big-R notation can be used to denote not only

recurring constructs of software architectures and data

objects, but also repetitive operational behaviors of soft-

ware. According to Definition 11, structures of arbitrary

software entities can be formally denoted by the big-R
notation in a unique and efficient syntax.

Example 1. The default system structure of memory,

MEM�SM, and device interface port, PORT�SM, can be

specified by the big-R notation, respectively, as follows:

MEM�SM
∧=
[ n

R
i=0

�addri�H�datai�� �

]∣∣∣∣SM

PORT�SM
∧=
[ m

R
i=0

�ptri�P�datai�� � IOi�BL

= �T�BL� intput��

�F�BL�output���

]∣∣∣∣SM

(13)

where it is a convention that the internal memory space

is denoted by a address addri�H, while the external port

space is denoted by a pointer ptri�P, though they are

mathematically equivalent; and the expression IOi�BL =
�T�BL�output�� �F�BL� input�� denotes a refinement of

the port I/O specification.

Similarly, the behavior of an arbitrary software process

can be formally denoted by the big-R notation in a unique

syntax.

Example 2. The default functions of memory

read/write, MEM�PM, and port input/output, PORT�PM,

can be uniquely denoted by the big-R notation,
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respectively, as follows by operating on the corresponding

structure models as specified in Example 1:

MEM�PM

∧=

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

n

R
i=0
�datai�� �=MEM�SM�addri�H�� // Read

n

R
i=0
�MEM�SM�addri�H� �= datai��� // Write

PORT�PM

∧=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

m

R
i=0
�datai�� �= PORT�SM�ptri�P�

IOi�BL= T�BL�� // Input

m

R
i=0
�PORT�SM�ptri�P� IOi�BL

= F�BL� �= datai��� // Output

(14)

3.3. Formal Structure Model of Software
Objects by Typed Tuples

It is recognized that the structure model of software objects

is a multidimensional composition of homogeneous or het-

erogeneous variables in primitive and/or complex types

such as a set of structured variables, internal logical mod-

els, hardware interfaces, and control structures of soft-

ware. The structure models provide a formal means for

rigorously describing complex types and constructs in

every phase of system lifecycles such as those of require-

ments representation, specification, modeling, implemen-

tation, and validation.

It is noteworthy that the structure model as a special sys-

tem type is nontrivial software objects in software science

and computing, which play an important role in system

design and modeling as the effecter and holder of system

operation results, as well as intermediate and contingent

values of variables, within and beyond the lifecycle of the

behavioral processes that invoke them.

Structure models of software can be rigorously

described by the mathematical models of software objects

and typed tuples at two levels from the bottom up.

Definition 12. A software object, O, is an abstract

model of a variable �, v ∈ V ⊂ Þ� � �, specified in

a certain type � modified by a type constraint ���� �
that yields a tailored subdomain � ′ according to given

problem-specific restriction � ′′, i.e.,:

O
∧= �� � � ����� �= �\� ′′ = � ′� (15)

where ���� �= �\� ′′ = � ′ tailors � in Dm into the subset

� ′ in Dp, i.e., ��� ⇒ ������ �= ��� ′.
Definition 13. A typed n-tuple, �n, is a structured

encapsulation of n software objects in homogeneous or

heterogeneous types �i, 1≤ i ≤ n, with certain constraints

��i��i
��i), i.e.,:

�n ∧=
( n

R
i=1

Oi�SM

)

=
( n

R
i=1
��i � �i���i��i

��i�= �i\� ′′i �
) (16)

On the basis of the formal model of typed tuples, the

structure model of software can be formally expressed as

follows.

Theorem 2. The structure model of software, SM, in �
states that any software object, as well as its internal
control structures and interfaces with external hardware
devices, can be uniformly represented and refined by the
general mathematical model of typed n-tuple �n, i.e.,:

SM
∧= �n =

( n

R
i=1
��i � �i���i��i

��i�= �i\� ′′i �
)

= ���1 � �1���1��1
��1�= �1\� ′′1 ��

��2 � �2���2��2
��2�= �2\� ′′2 �� (17)

	 	 	

��n � �n���n��n
��n�= �n\� ′′n �

�

where �i��i, 1≤ i≤ n, is one of the software objects as an
element of the SM in type �i in general and in the problem-
constrained domain ��i��i

��i�= �i\� ′′i in particular.

Proof. According to Definitions 6, 10, 12, and 13, the

following relationship holds in �:

SM = �n ⊇ �p ∪c�⊇*t ⊇ � �O = ��� � (18)

Therefore, any primitive or complex software objects can

be uniquely modeled by an SM or typed tuple in the form

of Eq. (17). The necessary and sufficient conditions of SM

are as follows:

(a) The necessary condition: Because any primitive vari-

able o�� or any attribute of a complex software object

O�SM =Rn

i=1 oi��i in � needs to be abstractedly specified

by a type � ⊂ *t = p ∪c and an associate constraint

���� �� �, the necessity of the typed tuple model is fulfilled

according to Definitions 6, 10, and 12;

(b) The sufficient condition: Because any complex soft-

ware object O�SM =Rn

i=1 oi��i is a finite structure of lim-

ited number of elements in �, the sufficiency of the typed

tuple model is fulfilled for denoting any simple or complex

objects according to Definition 13. �
Theorem 2 reveals that the general structural model of

software in �, such as a variable or constant in a primitive

type and an internal control structure or interface of an

external device as a complex model of software objects

can be formally modeled by an SM.

Example 3. The port of a device interface for a

keypad in a software system, PORTkeypad�SM, can be
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formally specified as an SM according to Theorem 2 as

follows:

PORTkeypad�SM

∧= ��Ptr � P�Ptr�P= 2F01�H��
�DataInput� B�DataInput�B= 0000 1111�B��
�IO_Control � BL�IO_Control�BL= F �BL�

� (19)

Example 4. A segment of the system memory,

MEM1�SM, in [FA00�H�FA0F�H] can be formally speci-

fied according to Theorem 2 as follows:

MEM1�SM

∧= ���Addr0 � H�Addr0�H= FA00�H�

Data0 � B�Data0�B= 1000 1100�B���
��Addr1 � H�Addr1�H= FA01�H�

Data1 � B�Data1�B= 1000 1001�B��� (20)

	 	 	

��Addr15 � H�Addr15�H= FA0F�H�

Data15 � B�Data15�B= 0000 0100�B��
�

Example 5. A set of structure models for the com-

ponents of a digital clock, can be formally denoted as

follows:

ComponentStructure�Clock��SM

∧= ��Processor�SM��
�Keypad�SM��
�LED�SM��
�Pulse�SM��
�Bell�SM��
�SCB�SM� // The system control block

�

(21)

where details of each SM in Eq. (21) can be refined

according to Theorem 2 similarly as in those of Exam-

ples 3 and 4.

Example 5 indicates that the components of a software

system can be formally described by SM of SMs in a

hierarchical structure.

Corollary 2. Any complex or primitive object structure
of software, S, in � can be formally modeled (declared)
by an SM and invoked by its field access, i.e.,:⎧⎪⎨

⎪⎩
Declaration: S�SM ∧=

( n

R
i=1
�Si � �i��Si��i

��i��
)

Invocation: S�SM	Si��i

(22)

where the invocation of a declared SM will be elaborated
in the process models in Section 4.

3.4. The Formal Structure Model of Software
Architectures at the System Level by
Relational Typed-Tuples

The architectural model of software at the system level is

a composition of all SMs of its components according to

a set of algebraic relational rules, which can be formally

modeled by relational typed-tuples.

Definition 14. The set of architectures of a soft-

ware ℘, A, in � is a Cartesian product of sets of struc-

tures S, i.e.,:

A= S×S� S ⊂ Þ�� ℘���

A⊂ Þ�� ℘��
(23)

Definition 15. The set of architectural relations, �a,

�a ⊆ Þ� � �, between the structure models SMs of soft-

ware components in a given system in � encompasses

nine basic structural composition operators elicited from

the most fundamental software structures, i.e.,:

�a

∧= ��→��� ��� ���
∫∫
©��� � e� (24)

where the architectural operators represent the relations

of parallel, sequential, embedded, input, output, I/O,
concurrent, pipeline, interrupt, and dispatch structures,

respectively.

The syntaxes of the architectural relations �a is a subset

of the behavioral relations � as given in Table IV. Fur-

ther details and their formal semantics may refer to Wang

(2008b).

Corollary 3. The general pattern of software system
architectures, �, � ⊂ Þ� � �, is an algebraically com-
posed structure in � by finite architectural relations
between all components’ SMs, i.e.,:

�
∧=

n

R
i=1

�SMi rij SMj�� rij ∈ �a� j = i+1 (25)

Example 6. An informally described architecture of an

abstract software system, S§, is shown in Figure 1. It can

be formally modeled according to Corollary 3 as follows:

(a) Top level architecture of the system:

S§
∧= S1 �S2 � · · · �Sn

S1 S2 Sn

S11 S12 S13 S21 S22

S§

Sn1

Sn11S1 11 S1 1x…

…

Fig. 1. The architecture of an abstract software system.
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(b) Level 2 refinement:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

S1

∧= S11 �S12 �S13

= �S111 � · · · �S11n��S12 �S13

S2

∧= S21 → S22

	 	 	

Sn

∧= Sn1 � Sn11

(26)

(c) Level 3 refinement:

S11

∧= S111 � · · · �S11n

Example 7. The composition of the architecture of a

concrete digital clock system, Clock§.Architecture�SM, is

formally described according to Corollary 3 based on the

conceptual model as given in Figure 2 as follows:

Clock§	Architecture�SM

∧=  �Keypad�SM�Pulse�SM�

�� �Procesor�SM �SCB�SM�

�� �LED�SM �Bell�SM�

�

(27)

where Processor�SM is embodied as the Clock§ system

parallel with the system control block, SCB�SM, repre-

sented by system control structures, events, status, and

global variables.

Corollary 4. The general topological architecture of
software systems, S℘, is an embedded hierarchical struc-
ture in � where each kth layer of it, Sk

℘, in the system
hierarchy can be represented or refined by its next layer,
Sk−1
℘ , i.e.,:

S℘

∧=
n

R
k=1

Sk
℘�S

k−1
℘ �� S0

℘ = O�SM= V ��
= Sn

℘�S
n−1
℘ �	 	 	 �S1

℘�S
0
℘����

(28)

where S0
℘ is a known primitive software object represented

by a typed variable.

Bell

[1]

Digital
Clock

Processor
[1]

SCB
[1]

LED

[4]

Pulse

[1]

Keypad

[1]

Fig. 2. The conceptual model of a digital clock.

4. MATHEMATICAL MODELS OF SOFTWARE
FUNCTIONAL BEHAVIORS—EMBEDDED
PROCESSES

Upon the contemporary understanding about software and

its properties in computer science, software engineering,

information science, system science, and computational

intelligence, any meta and complex software behavior can

be formally described by a functional process, which is

recursively built by a unique mathematical structure known

as the chain of embedded functions of functions (Wang,

2002, 2008a). Assume each statement, process, and pro-

cess relation be treated as a function, then the entire

behaviors of an abstract software system is a higher order

function of functions that operates on low-level functions

and structure models during program execution.

On the basis of the structure models of software pre-

sented in preceding section, the behavior models of soft-

ware can be formally analyzed and modeled as a set of

meta-processes at the instruction level, and then a set of

relational operations of complex processes at the function

level. The process model of meta and complex processes

leads to the embedded process theory of software functions

and behaviors as a Cartesian product between the sets of

process models and structure models.

4.1. Meta-Processes of Software Behaviors
The essence of software behaviors is centric by the meta-

process models at the lower level and the embedded

composed processes at the higher level (Wang, 2008a).

Behaviors of programs and software systems are observ-

able computing processes and operational consequences

on structural models of software objects in �. Typical

software behaviors modeled by various instruction sets of

computers and programming languages can be classified

into eight categories known as those of data manipula-

tions, arithmetical operations, logical operations, bitwise

operations, program controls, memory manipulations, I/O

manipulations, and time/interrupt manipulations. The eight

categories of fundamental software behaviors defined on

abstract data objects can be grouped into internal and

external (interactive) behaviors (Wang, 2007a).

Definition 16. The meta-processes of software ℘, P ,

in � are abstract models of a set of fundamental computing

instructions � operating on a set of software structures S,

i.e.,:

P
∧= �×S� �⊂ Þ�� ��

S ⊂ Þ�� ℘���

P ⊂ Þ� �℘� �

(29)

According to Definition 16, the basic functional element

of software is a statement or a meta-instruction commonly

specified by programming languages. The statement as an

instance of an instruction in a given programming lan-

guage is the smallest functional unit of software, which
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specifies an explicit action and yields the change of one or

more data objects logically modeled by simple variables

or structure models.

Definition 17. An abstract instruction or statement, is,
is a meta-function p in �, that maps a set of input variables

I� into a set of output variables O� , i.e.,:

is
∧= p � I� →O�� I��O� ⊂ S ⊂ Þ� ���

is� p ⊂ ÞP ⊂ Þ�� �
(30)

A meta-process is a basic and common functional oper-

ator in �, which cannot be broken down to more detailed

actions or behaviors. The most general and fundamental

software behaviors can be mathematically modeled by a

set of meta-processes. Then complex processes are derived

by compositions of meta-processes according to a set of

algebraic rules of process relations.

Definition 18. The set of meta-processes of software,

� , � ⊂ ÞB ⊂ Þ�� �, encompasses 17 fundamental soft-

ware operators elicited from the fundamental and essential

computational needs, i.e.,:

�
∧= �=� �⇒�⇐�	����� ��� ���

@=�
�↑�↓� !�⊗���§� (31)

where the meta-processes represent assignment, evalu-
ation, addressing, memory allocation, memory release,
read. write, input, output, timing, duration, increase,
decrease, exception detection, skip, stop, and system,

respectively.

Mathematical notations and syntaxes of the meta-

processes of software are formally described in Table III,

while their formal semantics may be referred to (Wang,

2008b). As shown in Definition 18 and Table III, each

meta-process in � is a basic operation on one or more

operands such as variables, memory elements, and I/O

ports. Structures of operands (software objects) and their

allowable operations are constrained by their types � as

described in Section 3.1.

4.2. Algebraic Composition of Software Behaviors by
Complex Processes

On the basis of the finite set of 17 meta-processes of soft-

ware identified in Section 4.1, any complex behavior of

software can be derived via relational compositions of two

or multiple meta-processes according to certain algebraic

composition rules.

Definition 19. The set of functions of a software sys-

tem ℘, F , in � is a Cartesian product between sets of

meta-processes P , i.e.,:

F = P ×P� P ⊂ Þ��℘� �� F ⊂ Þ� � ℘�� (32)

According to Definition 19, as that the mathematical

model of a basic software behavior is a meta-process,

a complex behavior of software can be formally described

by relational compositions of meta-processes.

Table III. Meta-processes of software (� ).

No. Meta Process Notation Syntax

14 !Exception detection ! (@e|S)

15 Skip

16 Stop

17 System § SysID|§

12 ↑Increase ↑(n| )

13 ↓Decrease ↓ (n| )

1 :=Assignment                  y| : = x|

4 ⇐Memory allocation id| ⇐ MEM [ptr|P] |

3 ⇒Addressing id| ⇒ MEM [ptr|P] |

5 Memory release id|        MEM [⊥] | 

7 Write x|         MEM [ptr|P] |

8 Input PORT[ptr|P]|         x|

9 Output x|         PORT [ptr|P]|

2 Evaluation  exp| →  Dom(   ), 
∈{BL, N, Z, B}

11 Duration @tn|TM Δ §tn|TM + Δn|TM

10 @Timing @t|TM @ §t|TM

6 Read MEM [ptr|P] |        x|

|

|

Definition 20. A complex process, P ∗, in � is an alge-

braic composition of two or more meta-processes P by a

set of relational operators � in F , i.e.,:

P ∗
∧= ��P �P�� P ⊂ Þ��℘� ��

�� P ∗ ⊂ F ⊂ Þ� �℘� �
(33)

where the binary composition can be extended to multi-

dimensional Cartesian product.

The process relations of software can be formally

described by a set of relational operators on meta-

processes as a set of process composition rules for building

complex processes. A set of 17 process relational oper-

ators is elicited from software behavioral modeling and

computing as follows.

Definition 21. The set of relational process operators
of software, �, � ⊂ F ⊂ Þ� � ℘ � �, encompasses 17

algebraic relational operators for building complex pro-

cesses in �, i.e.,:

�
∧=
{
→��� �� �		�		�R∗�R+�Ri�

�����
∫∫
©� ������ � e� t� i

} (34)

where the process operators denote sequence, jump,
branch, switch, while-loop, repeat-loop, for-loop,
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recursion, function call, parallel, concurrence, interleave,
pipeline, interrupt, event-driven dispatch, time-driven
dispatch, and interrupt-driven dispatch, respectively.

As given in Definition 21 and Table IV, the 17 process

relational operators represent a set of fundamental mecha-

nisms of programming and system behavioral description,

because any complex process can be combinatory built by

the algebraic process operations on the set of the 17 meta-

processes. In Table IV, the big-R notation used in process

relations #5 through #8 is a special calculus as described

in Section 3.2.

4.3. The Embedded Process Theory of
Software Behaviors

A software behavior as a complex process is a chain of

compositions of a list of meta-processes by predefined

relational or composing rules � as given in Table IV. It is

noteworthy that in a complex process the relations between

meta-processes are a set of special embedded relational

operators, in which the current process is not only related

to the next process, but also related to all previous

processes.

Table IV. Algebraic operations on meta-processes of software (�).

No. Process relational
operator

Notation Syntax

Sequence → P → Q

Jump P Q

Branch | exp|BL = T|BL → P

| ~ → Q

Switch |
…
|

exp| =

i → Pi

| ~ →

where ∈ {N, Z, B, S }

While-loop

R*
F

exp|BL = T

P|PMR

Repeat-loop

R+
For-loop

Ri

Recursion

n

i|N=1
R P (i|N)

Function call P F

Parallel || P Q

Concurrence P Q

Interleave ||| P ||| Q

Pipeline P Q

Interrupt P Q

Event-driven dispatch e @ei S e Pi

Time-driven dispatch t @ti|TM t Pi

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17 Interrupt-driven dispatch i @intj i Pi

P|PM →             P|PM
F

exp|BL = T
R

(Pi|N|PM
n|N

i|N=1
R Pi|N–1|PM)

 |

Theorem 3. The process model of software behaviors at
the component level, PM , PM ⊂ ÞF ⊂ Þ� ��, is a Carte-
sian product between a process p and a structure s, in �,
i.e.,:

PM
∧= p× s� p ⊂ P ∗ ⊂ ÞF ⊂ Þ� � ��

s ⊂ S ⊂ Þ�� PM ⊂ ÞF ⊂ Þ� ��

= p�P ∗ × s�SM
(35)

Proof. Theorem 3 can be directly proved according to

Definitions 5 and 16. �

According to Theorem 3, many conventional technolo-

gies in programming and software engineering would

increase complexity therefore be anti-productive. For

instance, the widely used software modeling scheme

known as object-oriented programming (OOP) is actually

inefficient in both system modeling and implementation,

because it hybridizes the independent facets of software

structures and functions into the same class construct.

Once a structure (data object) in a given class is invoked

by multiple methods (processes) in other classes, or vice

versa, when a method in a given class accesses multiple

structures in other classes, the architecture of the software

does immediately become an intricately unstructured sys-

tem. This empirical practice has dramatically increased the

complexity of software structures and behaviors as well

as their inherence and interactions. Therefore, the OOP

methods for software engineering are not in line with the

insights of software science, which reveals that software is

interactive behaviors between two totally different facets

known as of the functions and structures of the software

system.

Definition 22. A complex process P ∗ in �, P ∗
∧=

��pi� pj� ⊂ F ⊂ Þ� � ℘ � �, is an embedded relational

composition of a series of n meta-processes pi and pj

according to certain relational operations or composing

rules �ij , �ij ∈ �⊂ F ⊂ Þ� � ℘� �, i.e.,:

P ∗ =
n−1

R
i=0

�pi �ij pj�� j = i+1�

pi� pj ⊂ � ⊂ Þ����

�ij ∈ �⊂ F ⊂ Þ� � ℘� �

= �	 	 	 ���p0��01p1��12p2� 	 	 	�n−1�n pn�

(36)

where 1≤ i < n−1, and 2≤ j = i+1≤ n.

The structure of the abstract embedded process model,

P ∗ =Rn−1

i=0 �pi�ijpj�, can be illustrated in Figure 3, which

indicates that any kth, 1 ≤ k < n− 1, function (state-

ment) given in a process is a relational composition

with all cumulated k− 1 preceding functions, i.e., P ∗ =
�	 	 	 ���p0�r01p1�r12p2� 	 	 	 rk−1� kpk�. In Definition 22, the

sets of meta-processes � and relational operators � have

been formally defined in Tables III and IV, respectively.

Theorem 4. The embedded relational model of processes
(ERMP) states that the abstract process P ∗ is a general
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p0 p0 r01 p1 …

t

P* = P × P

Pn = R  (pi rij pj)i = 1

n–1

Fig. 3. The hyperstructure model of embedded processes of software.

model of software behaviors composed by a set of n meta-
statements si, 1 ≤ i ≤ n, with left-associated embedded
relations, i.e.,:

P ∗ =
n−1

R
i=0

�sirij sj�� j = i+1� s0 =&
= �	 	 	 ����&�r01s1�r12s2�r23s3� 	 	 	 rn−1�nsn�

(37)

where si, sj ∈ � ⊂ Þ���, and rij ∈�⊂ Þ� �� are given
in Definitions 18 and 21, respectively.

Proof. Given s0 =&, Theorem 4 is proved in the follow-

ing sequence:

P0 = s0r01s1 = r01�&� s1�= s1

P1 = s1r12s2 = r12�s1� s2�= r12�r01�&� s1�� s2�

P2 = s2r23s3 = r23�s2� s3�= r23�r12�r01�&� s1�� s2�� s3�

	 	 	

Pn−1 = sn−1rn−1�nsn = rn−1�n�sn−1� sn� (38)

= rn−1�n�rn−2�n−1�	 	 	 �r23�r12�r01�&� s1�� s2�� s3�

	 	 	�� sn−1�� sn�

= �	 	 	 ����&�r01s1�r12s2�r23s3� 	 	 	 rn−1�n sn�

=
n−1

R
i=0

�sirij sj�=
n−1

R
i=0

Pi = P ∗ �

Definition 23. The schema of an abstract process, � ,

in � is a general pattern of processes identified by the

name of the process P �PM and three sets of default param-

eter structures known as those of inputs I �SM, outputs
O�SM, and global structure models GM�SM, i.e.,:

�
∧= P �PM��I �SM�� �O�SM�� �GM �SM���
P ⊂ ÞP ⊂ ÞF ⊂ Þ� �℘� ��

I�O ⊂ ÞS ⊂ ÞA⊂ Þ� �℘� ��

GM ⊂ ÞA ⊂ Þ�� ℘� �

(39)

where GM represents a set of global object structure mod-

els in the system whose lifecycle is usually longer than

that of the invoking process.

Example 8. The schemas of the functions of the dig-

ital clock system, Clock§.Functions�PM, can be formally

modeled according to Definition 23 as follows:

Clock§	Functions�PM

∧= �SetTime�PM��I:: Key1�E��
�O:: LED�hh:mm��
�GM :: Keypad�SM�LED�SM���

ShowTime�PM��I:: Time�hh:mm:ss��
�O:: LED�hh:mm��
�GM :: LED�SM���

TickTime�PM��I:: � ��� �O:: � ���
�GM :: Pulse�SM�LED�SM��

�
(40)

Example 9. According to Theorem 4 and Defini-

tion 23, the process model of the show time process in

the digital clock, Clock§	ShowTime�PM, can be formally

refined as an embedded relational process model based on

Example 8 as follows:

ShowTime�PM��I:: Time�hh:mm:ss���O:: LED�hh:mm��
�GM:: LED�SM��

∧=→LED�SM	PORT�SM�LED1�P� �=Time�hx

→LED�SM	PORT�SM�LED2�P� �=Time�xh

→LED�SM	PORT�SM�LED3�P� �=Time�mx

→LED�SM	PORT�SM�LED4�P� �=Time�xm

� (41)

where only the sequential process relation → in � is

applied in this problem.

Corollary 5. Software is a higher-order function of
functions represented by a finite embedded sequence of
left-associated processes rather than a linear list of state-
ments or a system of combinational logic.

Theorem 4 and Corollary 5 indicate that software, algo-

rithms, and programs are a finite composition of embedded

processes or a chain of function of functions according to

the ERMP model.

Corollary 6. The context of software is a dynamic envi-
ronment embodied by its SMs, SMs � A, which is deter-
mined by the outcomes of the embedded left-associated
embedded processes where each current process is related
to the cumulative results of all previous processes buffered
in the SMs.

As discovered in Theorem 4, the ERMP model is a

novel denotational mathematical structure that reveals the

J. Adv. Math. Appl. 3, 130–147, 2014 141



R
E

S
E

A
R

C
H

A
R

T
IC

L
E

Software Science: On the General Mathematical Models and Formal Properties of Software Wang

fundamental difference of software from the conventional

structures such as those of a list of statements, a sequence

of functions, or automata. The uniqueness of the mathe-

matical structure of the embedded relations is a chain of

functions of functions, which is varying step-by-step dur-

ing a program execution.

Theorem 5. The entire space of software behaviors, +,
is a closure of all potential computational operations of
relational process compositions �× �� ×�� between any
pair of meta-processes, � ⊂ ÞP ⊂ Þ� � �, composed by
each of the relational operators �⊂ ÞF ⊂ Þ� ��, which
yields += 4,913.

Proof. The closure of software behaviors + in � can

be proved based on Theorem 4 as well as Definitions 18

and 21 as follows:

+ = ��× �� ×���
= ���•��� �•�� ��
= 173 = 4�913 �

(42)

Theorem 5 demonstrates the expressive power of the

process algebra based on the general ERMP model of soft-

ware systems towards computational behavior modeling

and programming. It is noteworthy that an ordinary pro-

gramming language may empirically introduce only 150

to 300 individual instructions. However, the entire behav-

ioral space of software in software science may generate

upto 4,913 computational operations, though it only adopts

fairly small finite sets of 17 meta-processes and 17 rela-

tional process operators.

5. MATHEMATICAL MODELS OF SOFTWARE
SYSTEMS—INTERACTIVE PROCESS
DISPATCH STRUCTURES

It is formally obtained in preceding sections that the math-

ematical model of software behaviors at the component

level in � is a finite chain of embedded processes mod-

eled by PMs. It is also demonstrated that the algebraic

model of software is a Cartesian product between PM and

SM in the meta-processes. In order to extend the theories

of software science to the system level based on embed-

ded process models of software at the component level,

the top-level software system will be formally synthesized

as an event-driven dispatch structure on PMs according to

Definition 5.

Definition 24. The set of system functions of software

℘, §F , §F ⊂ Þ
(
§ � �, is an abstract model of a set of

interactive relations between the sets of system events E,

behavioral processes P ∗, and object structures S in �, i.e.,:

§F
∧= E×P ×S� E ⊂* ⊂ Þ�� ℘���

P ⊂ ÞP ⊂ Þ� �℘� ��

S ⊂ Þ�� ℘� �

= E�*×P �PM×S�SM

(43)

5.1. Mathematical Models of Events and Environment
of Software Systems

Definition 25. The environment of software ℘, *,

* ⊂ Þ� � ℘� �, encompasses two categories of objects

known as sets of external events E’ and external struc-
tures S ′ interacting with another software systems ℘′ in �,

i.e.,:

* = E′� S ′�� E′ ⊂ Þ� ��∧E′ �/ ℘�

S ′ ⊂ Þ�� �∧S ′ �/ ℘
(44)

where E′ includes the timing events related to a system

clock that is treated as a default independent system.

Interactions between a given process or software to its

environment can be classified as sets of inputs (I �SM) or

outputs (O�SM), and the set of global object structures

(GM�SM), �
∧= P �PM��I �SM�, �O�SM�, �GM �SM��, as

given in Definition 23.

Definition 26. The sets of input and output relations
of software ℘, Ri and Ro, Ri ⊂ *×℘ � �, Ro ⊂ ℘×
* � �, are abstract models of system inputs and outputs

in �, i.e.,:

Ri ∧=*×℘= E′ ×℘�S ′ ×℘�

* ⊂ Þ� � ℘��� E′� S ′ ⊂*

Ro ∧= ℘×*= ℘×E′�℘×S ′�

* ⊂ Þ� � ℘��� E′� S ′ ⊂*

(45)

An event is treated as a special type of system variables

that represents the occurring of a predefined external or

internal change of status, such as a request of users, a

change of the environment, a device interrupt request, a

change of time, and a change of internal status. System

events as referred in Definitions 5, 24, 25, and 26 can be

formally modeled as follows.

Definition 27. An event of a software system ℘, E,

E ⊂*⊂ Þ��℘�� is an abstract model of a set of spe-

cial system variables such as an external trigger, a system

timing, or a device interrupt in �, i.e.,:

E
∧= V ′ ×T ′� V ′ ⊂* ⊂ Þ��℘� ��

T ′ ⊂*t ⊂ Þ� ℘� �
(46)

Definition 28. The taxonomy of system events, E, E ⊂
* ⊂ Þ� � �, is classified into three categories known as

the trigger events @Etr �S, timing events @Et �TM, and

device interrupt events @Eint�� in �, i.e.,:

E = @Etr �S�@Et �TM�@Eint��� (47)

where @ is the prefix of an event, and the suffixes of �S,

�TM, and �� represent that external triggers are denoted in

the type of string, timing events in the type of date/time,

and device interrupts in the type of interrupt, respectively.
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Definition 29. The trigger event, @Etr �S, is an dif-

ferential change of external status to a software system,

which can be either a positive trigger @E+tr �S or a negative
one @E−tr �S in �, @Etr �S ⊂ E ⊂* ⊂ Þ� �℘� �, i.e.,:

@Etr �S ∧=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

@E+tr �S=
(
d�&e�BL�

dt
= T �BL

)

∧ �&c�BL= T �BL�

= �&c�BL⊕&l�BL= T �BL�

∧ �&c�BL= T �BL�

@E−tr �S =
(
d�&e�BL�

dt
= T �BL

)

∧ �&c�BL= F �BL�

= �&c�BL⊕&l�BL= T �BL�

∧ �&c�BL= F �BL�

(48)

where the event &e�BL is captured by a default system
scan mechanism, d�&e�BL�/dt, from the input or interrupt

ports. When the input status has been changed from false

to true determined by the current scan &c�BL and last scan

&l�BL, it is identified as a positive trigger @E+tr �S; other-

wise, the event is a negative trigger @E−tr �S.

Definition 30. The timing event, @Et�TM, is an exter-

nally or internally generated event based on the global or

local clock §t�� , which is classified as the absolute timing

events §t�hh:mm:ss:ms, duration events §t�hh:mm:ss:ms+
'n�TM, or timer events @Timer i�n�TM��BL in �,

@Et�TM⊂ E ⊂* ⊂ Þ�� ℘� �, i.e.,:

@Et �TM
∧=

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

§t�hh:mm:ss:ms

§t�hh:mm:ss:ms+'n�TM

@Timer i�n�TM��BL

∧= ↓ �Timeri�SM�n�TM��= 0

(49)

where the absolute timing event is a given system time

§t�hh:mm:ss:ms from hour through millisecond; the dura-

tion event §t�TM+ 'n�TM is a relative point of time

determine by the given interval 'n�TM based on the sys-

tem clock at the initial time §t�TM; and the timer event

represents a time-out indicator generated by a downward

counter when its given value n�TM is reduced to zero by

the cyclic updating of the system clock.

Definition 31. The interrupt event, @Eint��, is a

device trigged event via the system interrupt capture mech-

anisms PORT int�SM represented by a preassigned interrupt

number Int#�� at a certain hexadecimal interrupt address

ptr int�P in �, @Eint�� ⊂ E ⊂* ⊂ Þ�� ℘��, i.e.,:

@Eint�� ∧= PORT int�SM�ptr int�P� Int#��� (50)

where �� denotes the type suffix of interrupt.

In the discourse of the software environment �, the

external trigger events are captured by cyclic system scan

from the interface ports of the system. The random inter-

rupt events are captured by a specific system interrupt

vector from the external devices. However, the timing

events can be captured by either periodical polling or time-

out interrupts of the system clock and software timers,

respectively.

5.2. The Dispatch Theory of System
Behaviors of Software

According to Definitions 5 and 24, the system behavior

of software at the top level is an event-driven dispatch

structure where system events are formally modeled in

Section 5.1.

Corollary 7. The overall logical model of software sys-
tems, §℘, §℘ ⊂ Þ

(
§ � �, is a three dimensional structure

yielded by the Cartesian product among the sets of system
events E, system functions F , and system architectures A
in �, i.e.,:

§℘ = E×F ×A� E ⊂* ⊂ Þ�� ℘� ��

F ⊂ Þ� � ℘��� A⊂ Þ� �℘� �

= E�*×F �PM×A�SM
(51)

Definition 32. A process dispatch structure, , , in �
is an event-driven mechanism of a software system at

the top level embodied by a Cartesian product, E × P ∗,
between the set of events E captured by the system and

the set of predesigned processes P ∗ of the system, i.e.,:

,
∧= §→

n

R
i=1

�@ei�E Pi�PM�@e′i�E &�

→ §� ei ∈ E∧ e′i ( E

(52)

where ei ∈ E = @Etr �S, @Et �TM, @Eint���, Pi ∈ P ∗ is a

meta or complex process as formally modeled in Section 4,

E × P ∗ is the set of process dispatching rules, and §

denotes the software system as the overall controller for

process dispatch.

On the basis of the process dispatch model specified in

Eq. (52) and the abstract behavioral model of software at

the component level as given in Theorem 4, the top-level

model of a software system can be described as follows.

Theorem 6. The overall mathematical model of software
systems (MMSS), ℘§, in � is a dispatch structure with
finite sets of embedded relational processes at the subsys-
tem and component levels, i.e.,:

℘§
∧=

m

R
k=1

�@ek�E Pk�PM�

=
m

R
k=1

[
@ek�E

n−1

R
i=1

�pi�k�ri� i+1�k�pi+1�k���PM
]

(53)
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Proof. Theorem 6 can be proved according Theorem 4

and Definitions 32. Substituting Pk�PM in Eq. (53) by

Eq. (37) as given in Theorem 4, the general form of soft-

ware system ℘§ is obtained as an event-driven dispatch of

chains of embedded relational processes. �

Theorem 6 and Definition 5 create a unified mathemati-

cal model of abstract software systems that can be deduc-

tively reduced to lower-level process and structure models

from the top down in system analyses, and be inductively

synthesized based on lower-level models from the bot-

tom up.

Example 10. The system dispatch process of the digital

clock, Clock§.SysDispatch�PM, can be formally specified

according to Theorem 6 on the basis of previous Examples

5, 7–9 as follows:

Clock§.SysDispatch|PM
(<I:: SCB|SM.@CurrentEvent|S>,

<O::( )>, <GM:: Clock§, SCB|SM>)

{→SysEvent|N : = SCB|SM.#FuncKey|N
→SCB|SM.#FuncKey|N: = 0

// Reset used event

→    SysEvent|N =

(1:    SetTime|PM (<I:: @SetT|S>,
<O::LED|hh:mm>,

<GM:: Keypad|SM, LED|SM, SCB|SM>)
|2:    SetAlarm|PM (<I:: @SetA|S>,

<O:: LED|hh:mm>,
<GM:: Keypad|SM, LED|SM, SCB|SM>)

|3:    ShowAlarm|PM (<I:: @ShowA|S>,
<O::LED|SM>,

<GM:: Keypad|SM, LED|SM, SBC|SM>)
|4:    ReleaseAlarm|PM (<I:: @ReleaseA|S>,

<O:: Bell|BL>,
<GM:: Keypad|SM, Bell|SM, SCB|SM>)

| ~: →∅
)

} (54)

where SCB�SM is the system control block that buffers

system scan status of external events and other global con-

trol variables.

Example 10 demonstrates that the architectural and

functional integration of any software system can be

implemented according to the general mathematical model

of software (GMMS, Definition 5) and the overall mathe-

matical model of software systems (MMSS, Theorem 6).

Corollary 8. The abstraction principle of software sys-
tems states that both the architectures and functions of
any software system ℘§ in � can be inductively integrated
and composed with decreasing details at different layers,
0≤ k ≤ n, from the bottom up.

Corollary 9. The refinement principle of software sys-
tems states that both the architectures and functions of
any software system ℘§ in � can be deductively specified
and analyzed with increasing details at different layers,
0 ≤ k ≤ n, from the top down.

The software science theories represented by the alge-

braic software model GMMS, the embedded process

model ERMS, and the event-driven system dispatch model

MMSS as formally obtained in Definition 5, Theorems 4,

and Theorem 6, respectively, can be deductively applied

to efficiently generate any software application or pro-

gram, particularly large-scale ones, based on formally

modeled PMs and SMs of a given system. Experiments

on transforming the formal software system models of

a set of large-scale real-world systems into code have

been reported on the automated teller machine (ATM)

(Wang et al., 2010d), the telephone switching system (TSS)

(Wang, 2009c), the lift dispatching system (LDS) (Wang

et al., 2009a), the real-time operating system (RTOS+)

(Wang et al., 2010b, c), the cognitive knowledge base

(CKB) (Wang and Tian, 2013), and the air traffic control
system (ATCS) (Wang et al., 2013a, b). The software sci-

ence theories powered by the RTPA methodology enable

machines to realize autonomic code generation (Wang et

al., 2010a) in any programming language based on the for-

mal models of software systems towards the ultimate aim

of software science and software engineering.

6. CONCLUSIONS
A theoretical framework of software science has been rig-

orously presented. This work has revealed that the nature

and mathematical models of software systems at the top

level is an event-driven dispatch structure according to the

MMSS model, while those at the intermediate component

or subsystem levels are a finite set of embedded processes

according to the EPMS model. A general mathematical

model of software has been created that formally describes

the object entities of software by a set of structure mod-

els (SMs), and the functional behaviors as a set of pro-

cess models (PMs). Then, the entire mathematical model

of software has been created as a Cartesian product ℘§
∧=

E×PM ×SM  based on the general mathematical model

of software (GMMS). On the basis of the formal theories

of software science, novel and rigorous methodologies and

technologies of software engineering will be developed in

empirical studies and practices in the software industry.

The rigorous theories, mathematical models, and formal

methodologies of software science obtained in a series of

basic researches have been successfully applied in real-

world large-scale software engineering projects by groups

of software engineers and graduate students. All pilot

projects have consistently yielded significant improvement

of software productivity by at least three folds due to

the rigorous methodology, design efficiency, complexity
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reduction, and inherited quality of the software science

methodologies.
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