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WHEN CAUSALITY DOES NOT IMPLY CORRELATION: 
MORE SPADEWORK AT THE FOUNDATIONS  

OF SCIENTIFIC PSYCHOLOGY1
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Summary.—Experimental research in psychology is typically based on an 
open-loop causal model which assumes that sensory input causes behavioral out-
put. This model was tested in a tracking experiment where participants were asked 
to control a cursor, keeping it aligned with a target by moving a mouse to compen-
sate for disturbances of differing difficulty. Since cursor movements (inputs) are 
the only observable cause of mouse movements (outputs), the open-loop model 
predicts that there will be a correlation between input and output that increases as 
tracking performance improves. In fact, the correlation between sensory input and 
motor output is very low regardless of the quality of tracking performance; causal-
ity, in terms of the effect of input on output, does not seem to imply correlation in 
this situation. This surprising result can be explained by a closed-loop model which 
assumes that input is causing output while output is causing input.

The variables manipulated in psychological experiments typically 
account for little more than 34% of the variance in behavior.2 Research-
ers have assumed that this lack of predictive power is due to a large ran-
dom component in the variability of behavior (e.g., Cozby, 2009). But there 
is reason to believe that the random component of behavioral variability 
cannot possibly be as large as suggested by the results of these experi-
ments.3 The research described in this paper tests the possibility that the 
poor predictive accuracy seen in psychological experiments results not 

1Address correspondence to Richard S. Marken, Department of Psychology, University of 
California, Los Angeles, 1285 Franz Hall, Box 951563, Los Angeles, CA 90095-1563 or e-mail 
(rsmarken@gmail.com).
2This is an estimate based on a review of 28 articles published in Psychological Science dur-
ing the first quarter of 2008. Research articles in the January, February, and March issues of 
Volume 19 were reviewed. Measures of variance accounted for, in terms of η2, were compiled 
for all experimental results that were statistically significant. Values of η2 (or the equivalent 
r2 value) were taken from the reports (if the values were reported) or an η2 measure was 
derived from the reported t or F ratios using the reported df. The overall average η2 value of 
.34 was based on a total of 217 reported measures of proportion of variance in the dependent 
variable accounted for by the independent variable. 
3Runkel (2003) points out that even a moderate level of random variability is not at all evi-
dent in everyday behaviors such as walking and driving a car.  For example, people rarely 
take a step and fall. But this kind of success requires enormous behavioral consistency. Even 
if the probability of a successful step was as high as .999, a person walking at 100 steps per 
minute would fall once every 10 minutes (Runkel, 2003, pp. 167). If the random component 
of behavior was anywhere near as large as it appears to be in conventional psychological 
experiments, we would see people falling all the time; in fact, we don’t.
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from the random variability of behavior but, rather, from looking at be-
havior in terms of the wrong model. 

Experimental research in psychology is based on an open-loop causal 
model of behavior, which is shown diagrammatically in Fig. 1. The math-
ematical version of this model is the general linear model (GLM), which 
is the basis of the main statistical methods used to analyze the data from 
psychological experiments (Cohen & Cohen, 1983). The open-loop model 
depicts behavior as the last step in a causal chain that begins with varia-
tions in an environmental variable—the independent variable in psycho-
logical experiments—and ends with variations in behavioral output—the 
dependent variable in experiments. Variations in the independent vari-
able are presumed to cause concomitant variations in the sensory input to 
the organism—the input variable. Any relation between independent and 
dependent variables observed in the experiment is presumed to reveal 
something about the mental processes that intervene between the input 
and dependent variable (Levitin, 2002). 

Two important assumptions are made when using the open-loop 
model: (1) variations in the independent variable are correlated with vari-
ations in the input variable, and (2) variations in the input variable are 
correlated with variations in the dependent variable (Marken, 1997, 2009). 
Only if these assumptions are true is it possible to infer correctly that any 
relation between the independent and dependent variables yields infor-
mation about the nature of the causal path through the organism from in-
put to dependent variable. In a classic paper with the provocative subti-
tle Some Spadework at the Foundations of Scientific Psychology, Powers (1978) 
presented evidence that these two assumptions do not hold if organisms 
are organized as closed-loop systems, with behavioral outputs always 
having feedback effects on sensory input. The evidence was obtained in a 
simple compensatory tracking experiment like that diagrammed in Fig. 2.4 

The independent variable in the compensatory tracking task is the 
disturbance acting on cursor position; it is the variable manipulated by 
the experimenter. The input variable is the distance between cursor and 
target; it is the variable the participant senses. The dependent variable is 
the mouse movement that is presumably caused by variations in the in-
put variable. The behavior in this task is clearly closed loop since the de-
pendent variable influences the input variable that is the presumed cause 
of variations in the dependent variable. Powers showed that in this situa-
tion, the correlation between the independent and input variables as well 
4Powers’ analysis (1978) assumes that behavior itself, not the task being performed, is either 
open or closed loop. If behavior is open loop, then this is the case whether the behavior oc-
curs in tasks that are considered closed loop (such as compensatory tracking) or open loop 
(such as the tasks performed in the typical psychological experiment). The same applies if 
behavior is closed loop.
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as that between the input and dependent variables is close to zero even 
when the correlation between the independent and dependent variables 
is consistently greater than .99.

The low independent-input variable and input-dependent variable 
correlations seen in a tracking task are puzzling from the point of view 
of the causal model because the paths from independent to input variable 
and from input to dependent variable are the causal links between the 
independent and dependent variables. While correlation may not imply 
causality, causality definitely should imply correlation (Neale & Liebert, 
1973; Shafer, 1996; Pearl, 2000; Anderson, 2001; Zhang & Spirtes, 2008). Yet 
this does not seem to be the case if behavior is closed loop.
Hypotheses

The present experiment extends Powers’ research by testing the pos-
sibility that the puzzling pattern of correlations observed in compensa-

Independent  
Variable

Independent  
Variable

Dependent  
Variable

Dependent  
Variable

Input  
Variable

Input  
Variable

Mental 
Processing

Fig. 1. The open-loop causal model of behavioral organization

Fig. 2. Closed-loop compensatory tracking task
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tory tracking depends on the difficulty of the task. The open-loop mod-
el predicts there will be a negative correlation between the cursor (input 
variable) and mouse movements (dependent variable) that will increase 
(move closer to −1.0) as task difficulty decreases. The input-dependent 
variable correlation should be negative because cursor variations must 
cause mouse movements which oppose (are negatively related to) the ef-
fects of the disturbance on the cursor. This negative input-dependent vari-
able correlation is predicted to increase (toward −1.0) as task difficulty de-
creases because the causal connection from cursor to mouse movements 
should be strongest when cursor position changes smoothly and by eas-
ily detectable amounts, as occurs when the task is easy. The model also 
predicts that there will be a large, positive correlation between the distur-
bance (independent variable) and input variable at all levels of task diffi-
culty given the direct physical influence of the disturbance on the cursor. 
The investigation reported here shows that these predictions of the open-
loop model are incorrect if behavior is closed loop.

Method
Sample

Six individuals, three men and three women, participated in the ex-
periment. Their ages ranged from 16 to 44 yr. 
Apparatus

Participants performed the compensatory tracking task diagrammed 
in Fig. 2. The task was performed on a desktop computer on which was 
displayed a red diamond (the cursor) that moved vertically between two 
blue pointers (the fixed target). Participants were asked to vary the posi-
tion of a mouse controller to keep the cursor aligned with the stationary 
target. The vertical position of the cursor (indicated by the white verti-
cal arrows) was influenced by a time varying, computer-generated dis-
turbance waveform (see Fig. 3). Cursor position was also influenced by 
mouse movements. To keep the cursor aligned with the target it was nec-
essary to move the mouse appropriately to compensate for the effects of 
the disturbance on the cursor. 
Design

The experiment used a one-way, within-subjects design. There were 
three levels of task difficulty: low, medium, and high. Difficulty was var-
ied by varying the center frequency of the narrow band-filtered noise dis-
turbance. Since the goal of the experiment was to assess the effect of task 
difficulty on the correlation between the disturbance (independent vari-
able) and cursor movements (input variable) and between cursor and 
mouse movements (dependent variable), these correlations were the main 
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dependent variables in the experiment. The variables in each tracking trial 
were sampled at the rate of 60 Hz during each 1-min. tracking trial. There-
fore, the correlations between the variables were based on 3,600 paired 
data points for each 1-min. tracking trial. An example of the temporal 
variations in the independent variable (disturbance), dependent variable 
(mouse movement), and input variable (cursor) observed during a track-
ing trial in the condition of High difficulty is shown in Fig. 3. 

Each participant performed four tracking sessions at each of the three 
difficulty levels, a total of 12 sessions. There were six randomly generated 
disturbance waveforms, two for each level of difficulty. There were four 
1-min. test trials at each level of difficulty; two of the four trials used one of 
the disturbance waveforms for that difficulty level and the other two trials 
used the other waveform. The order of all 12 tracking trials was random-
ized to counterbalance for order effects.

Results
Tracking Performance

The average root mean square (RMS) tracking errors (deviations of 
cursor from target) on all trials in the Low, Medium, and High difficul-
ty conditions were 6.4, 7.0, and 50 pixels, respectively. These RMS values 
are also measures of the average variability of the cursor (input variable) 
in the three conditions. The effect of difficulty on performance was sig-
nificant (F2,15 = 120.8, p < .001; η2 = .94). Post hoc pair comparisons using the 
Tukey HSD test showed that performance in the condition of Medium dif-
ficulty was not significantly worse (higher average RMS error) than that in 
the condition of Low difficulty, but performance in the condition of High 
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Fig. 3. Example of temporal variations in the independent variable (disturbance; 
), dependent variable (mouse movement; ), and input variable (cursor; ) dur-

ing a one-minute tracking trial.
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difficulty was significantly worse than that in the conditions of both Me-
dium and Low difficulty. 
Independent–Input Variable and Input–Dependent Variable Correlations

The main results of the experiment are shown in Table 1. The Table 
shows the means and standard deviations of the correlations, over trials 
and subjects, between the independent and input variables and between 
the input and dependent variables in each difficulty condition. Contrary 
to the predictions of the open-loop hypothesis, the independent–input 
variable and input–dependent variable correlations are quite small in all 
difficulty conditions. The largest independent–input variable correlation 
was −.25 (seen in the High difficulty condition), which is not only much 
smaller than predicted by the open-loop hypothesis but also of the wrong 
sign. The largest input-dependent variable correlation (.11) occurs in the 
Low difficulty condition and is also much smaller than predicted by the 
open-loop hypothesis and also of the wrong sign.

These low correlations (see Table 1) occur in difficulty conditions 
where the average independent-dependent variable correlations are very 
large (and negative): −.9998, −.9997, and −.9638 in the conditions of Low, 
Medium, and High difficulty, respectively. Thus, for all difficulties there is 
a nearly perfect correlation between the independent and dependent vari-
ables but a very small correlation between both of these variables with the 
input variable, the only variable linking them. 
Lagged Correlations

Since it is possible that the small input-dependent variable correla-
tions could have resulted from failure to take into account perceptual-mo-
tor delay, these correlations were re-computed with the dependent vari-
able lagging the input variable by from 50 to 500 msec. The changes in the 
correlations produced by these lags were generally quite small and al-
ways in a direction opposite that predicted by the open-loop hypothesis. 
The average input-dependent variable correlation went from .11 (at zero 
lag) to .07 (at a 500-msec. lag) in the condition of Low difficulty and from 

TABLE 1
Means and Standard Deviations of the Independent–Input Variable and Input–

Dependent Variable Correlations in the Low, Medium, and High Difficulty Conditions

Level of  
Difficulty 

Independent–Input  
Variable Correlation

Input–Dependent  
Variable Correlation

M SD M SD

Low 0.14 0.14 0.11 0.10
Medium 0.03 0.05 0.07 0.07
High −0.25 0.12 −0.02 0.09
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.07 (at zero lag) to .02 (at a 500-msec. lag) in the condition of Medium dif-
ficulty. In the condition of High difficulty, the average input-dependent 
variable correlation increased from –.02 (at zero lag) to –.39 (at a 500-msec. 
lag), but this result runs counter to the open-loop hypothesis, which pre-
dicts a decrease in the (negative) correlation between input and dependent 
variable with increasing task difficulty. 
Simulation Exercise

Simulation of an open-loop causal model showed that, if there is a 
simple causal path from independent to dependent variable via the input 
variable, the independent-dependent variable correlation should be near-
ly equal to the product of the correlations between independent and input 
variable and input and dependent variable. The independent-dependent 
variable correlations based on the product of the independent-input vari-
able and input-dependent variable correlations observed in this study are 
.015, .002, and .004 for the conditions of Low, Medium, and High difficulty, 
respectively. Virtually the same independent-dependent variable correla-
tions are derived when using the lagged values of the independent-input 
variable and input-dependent variable correlations. Clearly, the indepen-
dent-dependent variable correlations predicted by the open-loop causal 
model are not close to the observed values (–.9998, –.9997, and –.9638, in 
the conditions of Low, Medium, and High difficulty, respectively). Causal-
ity does not seem to imply correlation in this situation.
Repeated Disturbance

Another approach to assessing whether causality implies correlation 
is to look at the correlation between cursor (input variable) variations on 
two different tracking trials on which the same disturbance (independent 
variable) variations had occurred. Mouse (dependent variable) move-
ments on different trials with the same disturbance waveform will be 
highly correlated because the same movements must be used to compen-
sate for the same disturbance and keep the cursor on target. Since cursor 
variations are the only possible cause of mouse movements, the correla-
tion between cursor variations on pairs of trials with the same disturbance 
should be high when the correlation between mouse movements on these 
trials is high. This prediction was tested by looking at the correlation be-
tween cursor variations on pairs of tracking trials involving the same dis-
turbance waveform. 

Table 2 shows the means and standard deviations of the correlations 
between mouse movements (dependent variable) and cursor movements 
(input variable) at each level of difficulty on pairs of trials with the same 
disturbance (independent variable). The surprising result is the low cor-
relation between cursor variations (input-input variable correlations) on 
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pairs of trials in the conditions of Low and Medium difficulty when the 
correlation between mouse movements (dependent-dependent variable 
correlations) is .9996. Participants are making almost identical movements 
with the mouse on pairs of trials on which cursor movements, the only 
possible information regarding what those movements should be, are al-
most completely different. The same values for the correlations between 
input and dependent variables on pairs of trials with repeated disturbanc-
es were found in an earlier version of this study (Marken, 1980).

The highest input-input variable correlation in Table 2 (.76) is found 
in the condition of High difficulty. This result is precisely the opposite of 
that predicted by the open-loop hypothesis. According to that hypothesis, 
tracking performance is best when input accurately drives output. So the 
best evidence for input being the cause of output should be found in the 
conditions of Low and Medium difficulty, in which tracking performance 
is best. But the only evidence that input drives output in this experiment—
based on a high input-input variable correlation—is found in the condi-
tion of High difficulty in which tracking performance is actually worst. So, 
again, causality, in terms of the causal relation between cursor and mouse 
movements, which must exist, does not seem to imply correlation when 
behavior is closed loop. 

Discussion
Closed-loop Analysis

A computer model of a closed-loop control system performing the 
compensatory tracking tasks used in this study showed why the causal 
connections from independent to input variable and from input to depen-
dent variable do not imply correlation in this situation. A diagram of the 
closed-loop model is shown in Fig. 4. The model depicts variations in the 
input variable as simultaneously caused by variations in the independent 
and dependent variables. Thus, there are two simultaneous causal con-
nections in the model; the “forward” causal connection from input to de-
pendent variable, and the “feedback” connection from dependent to input 
variable. 

TABLE 2
Means and Standard Deviations of the Input–Input Variable and Dependent–

Dependent Variable Correlations in the Low, Medium, and High Difficulty Conditions

Level of  
Difficulty 

Input–Input Variable  
Correlation

Dependent–Dependent 
Variable Correlation

M SD M SD

Low 0.22 0.10 0.999 0.00
Medium 0.26 0.10 0.993 0.00
High 0.77 0.10 0.946 0.00
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The forward causal link transforms the input variable into the depen-
dent variable via a comparison process: the input variable is compared 
(via subtraction) to a reference signal, which corresponds to the intended 
target position of the input variable. The difference between input vari-
able and reference signal is an error signal that causes variations in the 
dependent variable. The parameters of the model are a temporal slowing 
factor (for dynamic stability) and a gain factor (which amplifies the differ-
ence between input variable and reference signal in the conversion to the 
dependent variable). These parameters can be adjusted to fit the behavior 
of the model to that of the human participants. 

The closed-loop model was adjusted so that its tracking performance 
in each experimental condition, in terms of RMS error, was nearly the 
same as that of human participants. The independent-input variable cor-
relations and the input–dependent variable correlations produced by the 
model in the different difficulty conditions matched those of the human 
participants (Fig. 4). These results show that the failure to find large in-
dependent–input variable and input–dependent variable correlations in 
this study does not mean that there is no causal connection between these 
variables. The causal connection from independent to dependent variable 
occurs in the closed-loop control model as the “forward” connection from 
independent to input variable and from input variable to comparison with 
the reference signal to production of the dependent variable (Fig. 4). 

Because the open-loop model focuses only on the “forward” causal 
connection from independent to input variable and from input to depen-
dent variable, this causal path is predicted to be reflected in the correlation 
between these variables. But in the control model, the two-way connection 
between input and dependent variable keeps this forward causal connec-
tion from showing up in the correlations between these variables. 

Independent  
Variable

Dependent  
Variable

Input 
(Controlled) 

Variable

Reference 
Signal

Fig. 4. Closed-loop model of tracking
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Contribution of Neural Noise
Unlike the results for the human participants (Table 2), the input–in-

put variable correlations produced by the closed-loop model are 1.0 at all 
levels of difficulty. The model can be made to match the correlations seen 
with humans through the addition of unfiltered random noise to the mod-
el’s output. The addition of noise with amplitude less than 5% of the out-
put range brings the input-input variable correlations for the closed-loop 
model down to the same range as those found for the human participants 
(.2 in the conditions of Low and Medium difficulty and .76 in the condi-
tion of High difficulty). Interestingly, the addition of this noise has virtu-
ally no effect on the model’s tracking performance (the ability to control 
the input variable) due to the low-pass filtering characteristics of a closed-
loop control system. RMS tracking error for the model with random noise 
added still matches that of the human participants in all conditions of dif-
ficulty. The level of noise added to match the input-input variable corre-
lations for humans seems to be of the correct order of magnitude based 
on estimates of the magnitude of neural noise levels derived from neuro-
physiologic measures (Nakajima, Fukamachi, Isobe, Miyazaki, Shibazaki, 
& Ohye, 1978; Miller & Troyer, 2002). 
Implications for Experimental Psychology

The results of the present study confirm Powers’ (1978) conclusion 
that the independent–dependent variable relations observed in psychol-
ogy experiments will not necessarily reflect the nature of the causal con-
nections involved in behavior if the behavior under study is closed loop, 
that is, if the observed behavior (dependent variable) has feedback effects 
on the sensory cause of that behavior (input variable). This effect may be 
small in scientific psychology because most experiments are designed so 
that the behavior appears to be completely open loop. But there is reason 
to believe that the behavior in even the most obviously open-loop experi-
ment may actually be closed loop (Marken, 2009). The possible closed-
loop nature of the behavior in experiments can be seen by taking a closer 
look at the apparently open-loop behavior in a simple reaction-time ex-
periment. One independent variable in this experiment is the onset and 
offset of a stimulus, such as a tone; a dependent variable is pressing or 
not pressing a response key. The open-loop view of the behavior in this 
experiment is simple: variations in the independent variable cause varia-
tions in the dependent variable. The closed-loop view, on the other hand, 
starts with the observation that the onset of tones does not normally cause 
key presses; the participant must be given instructions about what to do 
when the tone comes on (and goes off). The instructions for the reaction-
time task tell the participant to press a key when the tone comes on but 
not otherwise.



CAUSALITY AND CORRELATION 11

According to the closed-loop view, the instructions in an experiment 
define an input variable that the participant is to control, a controlled vari-
able (Marken, 2005). In the compensatory tracking task, instructions de-
fine the controlled variable as the distance between the cursor and target, 
which is to be kept at zero. In the reaction-time task, the instructions define 
the controlled variable as a logical relation between tone and key press, 
“true” when the key is pressed after the tone comes on (or not pressed 
when the tone is not on) and “false” when the key is pressed when the 
tone is not on (or not pressed when the tone is on); this controlled variable 
is to be kept in the state “true.”

The closed-loop view of the behavior in psychology experiments can 
be tested using methods adapted from control engineering (Runkel, 2003, 
pp. 59-103; Powers, 2005, pp. 233-251). These methods involve testing to 
see whether a hypothesized controlled variable is actually under control. 
If these tests show that no variables are actually under control in an exper-
iment, then the behavior can be considered open loop and analyses of the 
data based on an open-loop model, such as the GLM, are perfectly appro-
priate. If, however, these tests show that a variable is under control, then 
the behavior must be considered closed loop and a closed-loop model of 
the behavior is required. 
Improving Prediction

The possible closed-loop nature of the behavior in psychological ex-
periments means that the conventional approach to research may be based 
on an incorrect model (Marken, 2009). If this be the case, then it could ex-
plain why it has been possible to account for only a small proportion of 
the variance of the behavior observed in conventional experiments. The 
results of the present experiments show that the low effect sizes found in 
the typical psychology experiment could result from using an open-loop 
model to analyze what is actually closed-loop behavior. This would hap-
pen if the tasks carried out in such experiments are so difficult that partici-
pants cannot keep the controlled variable under control. In a reaction-time 
experiment, evidence of lack of control would be errors such as failure to 
press the key shortly after tone onset (a miss) or pressing a key before tone 
onset (a false alarm). 

If the behavior in experiments is actually closed loop, then errors are 
equivalent to the deviations of the cursor from the target in a tracking 
task; they are a sign of loss of control. When control is poor in a track-
ing task—as it is when the task is made very difficult—the correlation 
between independent and dependent variable decreases. Were the diffi-
culty of the tracking task used in the present study increased to the point 
at which RMS error was nearly three times worse than that seen in the 
condition of High difficulty, the correlation between independent and de-
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pendent variable would be about –.6 (instead of –.99). This independent-
dependent variable correlation gives an η2 of .36, which is close to the av-
erage η2 of .34 found in psychology experiments based on the open-loop 
model. With the correct closed-loop model, however, it is possible to ac-
count for 99% of the variance of this apparently highly unpredictable de-
pendent variable.
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Summary.—Experimental research in psychology is typically based on an open-loop 

causal model which assumes that sensory input causes behavioral output.  This model was tested 

in a tracking experiment where participants were asked to control a cursor, keeping it aligned 

with a target by moving a mouse to compensate for disturbances of differing difficulty. Since 

cursor movements (inputs) are the only observable cause of mouse movements (outputs), the 

open-loop model predicts that there will be a correlation between input and output that increases 

as tracking performance improves. In fact, the correlation between sensory input and motor 

output is very low regardless of the quality of tracking performance; causality, in terms of the 

effect of input on output, does not seem to imply correlation in this situation. This surprising 

result can be explained by a closed-loop model which assumes that input is causing output while 

output is causing input. 
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The variables manipulated in psychological experiments typically account for little more 

than 34% of the variance in behavior.2  Researchers have assumed that this lack of predictive 

power is due to a large random component in the variability of behavior (e.g., Cozby, 2009).  But 

there is reason to believe that the random component of behavioral variability cannot possibly be 

as large as suggested by the results of these experiments.3  The research described in this paper 

tests the possibility that the poor predictive accuracy seen in psychological experiments results 

not from the random variability of behavior but, rather, from looking at behavior in terms of the 

wrong model. 

Experimental research in psychology is based on an open-loop causal model of behavior, 

which is shown diagrammatically in Fig. 1. The mathematical version of this model is the 

General Linear Model (GLM), which is the basis of the main statistical methods used to analyze 

the data from psychological experiments (Cohen & Cohen, 1983).  The open-loop model views 

behavior as the last step in a causal chain that begins with variations in an environmental 

variable—the independent variable in psychological experiments—and ends with variations in 

behavioral output—the dependent variable in experiments. Variations in the independent 

variable are presumed to cause concomitant variations in the sensory input to the organism—the 

input variable.  Any relation between independent and dependent variable observed in the 

experiment is presumed to reveal something about the mental processes that intervene between 

the input and dependent variable (Levitin, 2002).  

  

Two important assumptions are made when using the open-loop model: (1) variations in 

the independent variable are correlated with variations in the input variable, and (2) variations in 

the input variable are correlated with variations in the dependent variable (Marken, 1997, 2009).  

Only if these assumptions are true is it possible to infer correctly that any relation between the 

                                                 
2This is an estimate based on a review of 28 articles published in Psychological Science during the first quarter of 
2008.  Research Articles in the January, February, and March issues of Volume 19 were reviewed.  Measures of 
variance accounted for, in terms of η2, were compiled for all experimental results that were statistically significant. 
Values of η2 (or the equivalent r2 value) were taken from the reports (if the values were reported) or an η2 measure 
was derived from the reported t or F ratios using the reported df.  The overall average η2 value of .34 was based on a 
total of 217 reported measures of proportion of variance in the dependent variable accounted for by the independent 
variable.  
3Runkel (2003) points out that even a moderate level of random variability is not at all evident in everyday behaviors 
such as walking and driving a car.  For example, people rarely take a step and fall. But this kind of success requires 
enormous behavioral consistency.  Even if the probability of a successful step were as high as .999 a person walking 
at 100 steps per minute would fall once every 10 minutes (Runkel, 2003, pp. 167).  If the random component of 
behavior were anywhere near as large as it appears to be in conventional psychological experiments, we would see 
people falling all the time; in fact, we don’t. 
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independent and dependent variables yields information about the nature of the causal path 

through the organism from input to dependent variable.  In a classic paper with the provocative 

subtitle “Some spadework at the foundations of scientific psychology,” Powers (1978) presented 

evidence that these two assumptions do not hold if organisms are organized as closed-loop 

systems, with behavioral outputs always having feedback effects on sensory input. The evidence 

was obtained in a simple compensatory tracking experiment like that diagrammed in Fig. 2.4

The present experiment extends Powers’ research by testing the possibility that the 

puzzling pattern of correlations observed in compensatory tracking depends on the difficulty of 

the task.  The open-loop model predicts there will be a negative correlation between the cursor 

(input variable) and mouse movements (dependent variable) that will increase (move closer to -

1.0) as task difficulty decreases.  The input-dependent variable correlation should be negative 

because cursor variations must cause mouse movements which oppose (are negatively related to) 

  

The independent variable in the compensatory tracking task is the disturbance acting on 

cursor position; it is the variable manipulated by the experimenter.  The input variable is the 

distance between cursor and target; it is the variable the participant senses. The dependent 

variable is the mouse movement that is presumably caused by variations in the input variable. 

The behavior in this task is clearly closed loop since the dependent variable influences the input 

variable that is the presumed cause of variations in the dependent variable.  Powers showed that 

in this situation the correlation between the independent and input variables as well as that 

between the input and dependent variables is close to zero even when the correlation between the 

independent and dependent variables is consistently greater than .99. 

The low independent-input variable and input-dependent variable correlations seen in a 

tracking task are puzzling from the point of view of the causal model because the paths from 

independent to input variable and from input to dependent variable are the causal links between 

the independent and dependent variables.  While correlation may not imply causality, causality 

definitely should imply correlation (Neale & Liebert, 1973; Shafer, 1996; Pearl, 2000; Anderson, 

2001; Zhang & Spirtes, 2008). Yet this does not seem to be the case if behavior is closed loop. 

Hypotheses 

                                                 
4 Powers’ (1978) analysis assumes that behavior itself, not the task being performed, is either open or closed-loop. If 
behavior is open loop, then this is the case whether the behavior occurs in tasks that are considered closed loop (such 
as compensatory tracking) or open loop (such as the tasks performed in the typical psychological experiment). The 
same applies if behavior is closed loop. 
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Causality and Correlation  5 
 

  

the effects of the disturbance on the cursor.  This negative input-dependent variable correlation is 

predicted to increase (toward -1.0) as task difficulty decreases because the causal connection 

from cursor to mouse movements should be strongest when cursor position changes smoothly 

and by easily detectable amounts, as occurs when the task is easy.  The model also predicts that 

there will be a large, positive correlation between the disturbance (independent variable) and 

input variable at all levels of task difficulty given the direct physical influence of the disturbance 

on the cursor.  The investigation reported here shows that these predictions of the open-loop 

model are incorrect if behavior is closed loop. 

 

METHOD 

Sample 

Six individuals, three males and three females, participated in the experiment. Their ages 

ranged from 16 to 44 yr.  

Apparatus 

Participants performed the compensatory tracking task diagrammed in Fig. 2.  The task 

was performed on a desktop computer on which was displayed a red diamond (the cursor) that 

moved vertically between two blue pointers (the fixed target). Participants were asked to vary the 

position of a mouse controller to keep the cursor aligned with the stationary target. The vertical 

position of the cursor (indicated by the white vertical arrows) was influenced by a time varying, 

computer-generated disturbance waveform (see Fig. 3). Cursor position was also influenced by 

mouse movements.  To keep the cursor aligned with the target it was necessary to move the 

mouse appropriately to compensate for the effects of the disturbance on the cursor.   

Design 

 The experiment used a one-way, within-subjects design. There were three levels of task 

difficulty: low, medium, and high.  Difficulty was varied by varying the center frequency of the 

narrow band-filtered noise disturbance.  Since the goal of the experiment was to assess the effect 

of task difficulty on the correlation between the disturbance (independent variable) and cursor 

movements (input variable) and between cursor and mouse movements (dependent variable), 

these correlations were the main dependent variables in the experiment.  The variables in each 

tracking trial were sampled at the rate of 60 Hz during each 1-min. tracking trial. Therefore, the 

correlations between the variables were based on 3600 paired data points for each 1-min. 
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tracking trial.  An example of the temporal variations in the independent variable (disturbance), 

dependent variable (mouse movement) and input variable (cursor) observed during a tracking 

trial in the condition of High difficulty is shown in Fig. 3.    

Each participant performed four tracking sessions at each of the three difficulty levels, a 

total of 12 sessions. There were six randomly generated disturbance waveforms, two for each 

level of difficulty. There were four 1-min. test trials at each level of difficulty; two of the four 

trials used one of the disturbance waveforms for that difficulty level and the other two trials used 

the other waveform.  The order of all 12 tracking trials was randomized to counterbalance for 

order effects. 

 

RESULTS 

Tracking Performance 

The average Root Mean Square (RMS) tracking errors (deviations of cursor from target) 

on all trials in the Low, Medium and High difficulty conditions were 6.4, 7.0, and 50 pixels, 

respectively. These RMS values are also measures of the average variability of the cursor (input 

variable) in the three conditions.  The effect of difficulty on performance was significant (F2,15 = 

120.8, p < .001; η2

The main results of the experiment are shown in Table 1. The Table shows the mean and 

standard deviation of the correlations, over trials and subjects, between the independent and 

input variables and between the input and dependent variables in each difficulty condition.  

Contrary to the predictions of the open-loop hypothesis, the independent-input variable and 

input-dependent variable correlations are quite small in all difficulty conditions.  The largest 

independent-input variable correlation was -.25 (seen in the High difficulty condition), which is 

not only much smaller than predicted by the open-loop hypothesis but also of the wrong sign.  

The largest input-dependent variable correlation (.11) occurs in the Low difficulty condition and 

is also much smaller than predicted by the open-loop hypothesis and also of the wrong sign. 

 = .94). Post hoc pair comparisons using the Tukey HSD test showed that 

performance in the condition of Medium difficulty was not significantly worse (higher average 

RMS error) than that in the condition of Low difficulty but performance in the condition of High 

difficulty  was significantly worse than that in the conditions of both Medium and Low 

difficulty.  

Independent-Input Variable and Input-Dependent Variable Correlations 

Comment [dw3]: Insert Fig. 3 
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These low correlations in Table 1 occur in difficulty conditions where the average 

independent-dependent variable correlations are very large (and negative): –.9998, –.9997, and –

.9638 in the conditions of Low, Medium, and High difficulty, respectively.  Thus, for all 

difficulties there is a nearly perfect correlation between the independent and dependent variables 

but a very small correlation between both of these variables with the input variable, the only 

variable linking them.  

Lagged Correlations 

 Since it is possible that the small input-dependent variable correlations could have 

resulted from failure to take into account perceptual-motor delay, these correlations were re-

computed with the dependent variable lagging the input variable by from 50 to 500 msec. The 

changes in the correlations produced by these lags were generally quite small and always in a 

direction opposite that predicted by the open-loop hypothesis. The average input-dependent 

variable correlation went from .11 (at zero lag) to .07 (at a 500 msec. lag) in the condition of 

Low difficulty and from .07 (at zero lag) to .02 (at a 500 msec. lag) in the condition of Medium 

difficulty. In the condition of High difficulty the average input-dependent variable correlation 

increased from –.02 (at zero lag) to –.39 (at a 500 msec. lag), but this result runs counter to the 

open-loop hypothesis, which predicts a decrease in the (negative) correlation between input and 

dependent variable with increasing task difficulty.   

Simulation Exercise 

Simulation of an open-loop causal model showed that, if there is a simple causal path 

from independent to dependent variable via the input variable, the independent-dependent 

variable correlation should be nearly equal to the product of the correlations between 

independent and input variable and input and dependent variable.  The independent-dependent 

variable correlations based on the product of the independent-input variable and input-dependent 

variable correlations observed in this study are .015, .002, and .004 for the conditions of Low, 

Medium, and High difficulty, respectively. Virtually the same independent-dependent variable 

correlations are derived when using the lagged values of the independent-input variable and 

input-dependent variable correlations. Clearly, the independent-dependent variable correlations 

predicted by the open-loop causal model are not close to the observed values (–.9998, –.9997, 

and –.9638, in the conditions of Low, Medium, and High difficulty, respectively).  Causality 

does not seem to imply correlation in this situation. 
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Repeated Disturbance 

Another approach to assessing whether causality implies correlation is to look at the 

correlation between cursor (input variable) variations on two different tracking trials on which 

the same disturbance (independent variable) variations had occurred.  Mouse (dependent 

variable) movements on different trials with the same disturbance waveform will be highly 

correlated because the same movements must be used to compensate for the same disturbance 

and keep the cursor on target. Since cursor variations are the only possible cause of mouse 

movements, the correlation between cursor variations on pairs of trials with the same disturbance 

should be high when the correlation between mouse movements on these trials is high. This 

prediction was tested by looking at the correlation between cursor variations on pairs of tracking 

trials involving the same disturbance waveform.  

Table 2 shows the mean and standard deviation of the correlations between mouse 

movements (dependent variable) and cursor movements (input variable) at each level of 

difficulty on pairs of trials with the same disturbance (independent variable).  The surprising 

result is the low correlation between cursor variations (input-input variable correlations) on pairs 

of trials in the conditions of Low and Medium difficulty when the correlation between mouse 

movements (dependent-dependent variable correlations) is .9996. Participants are making almost 

identical movements with the mouse on pairs of trials on which cursor movements, the only 

possible information regarding what those movements should be, are almost completely 

different. The same values for the correlations between input and dependent variables on pairs of 

trials with repeated disturbances were found in an earlier version of this study (Marken, 1980). 

The highest input-input variable correlation in Table 2 (.76) is found in the condition of 

High difficulty. This result is precisely the opposite of that predicted by the open-loop 

hypothesis. According to that hypothesis, tracking performance is best when input accurately 

drives output. So the best evidence for input being the cause of output should be found in the 

conditions of Low and Medium difficulty, in which tracking performance is best. But the only 

evidence that input drives output in this experiment—based on a high input-input variable 

correlation—is found in the condition of High difficulty in which tracking performance is 

actually worst.  So, again, causality, in terms of the causal relation between cursor and mouse 

movements, which must exist, does not seem to imply correlation when behavior is closed-loop.  

 

Comment [sai5]:  
Table 2 
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DISCUSSION 

Closed-loop Analysis 

A computer model of a closed-loop control system performing the compensatory tracking 

tasks used in this study showed why the causal connections from independent to input variable 

and from input to dependent variable do not imply correlation in this situation.  A diagram of the 

closed-loop model is shown in Fig. 4. The model depicts variations in the input variable as 

simultaneously caused by variations in the independent and dependent variables.  Thus, there are 

two simultaneous causal connections in the model; the “forward” causal connection from input 

to dependent variable and the “feedback” connection from dependent to input variable.   

The forward causal link transforms the input variable into the dependent variable via a 

comparison process: the input variable is compared (via subtraction) to a reference signal, which 

corresponds to the intended target position of the input variable. The difference between input 

variable and reference signal is an error signal that causes variations in the dependent variable.  

The parameters of the model are a temporal slowing factor (for dynamic stability) and a gain 

factor (which amplifies the difference between input variable and reference signal in the 

conversion to the dependent variable).  These parameters can be adjusted to fit the behavior of 

the model to that of the human participants.  

The closed-loop model was adjusted so that its tracking performance in each 

experimental condition, in terms of RMS error, was nearly the same as that of human 

participants.  The independent-input variable correlations and the input-dependent variable 

correlations produced by the model in the different difficulty conditions matched those of the 

human participants (Fig. 4). These results show that the failure to find large independent- input 

variable and input-dependent variable correlations in this study does not mean that there is no 

causal connection between these variables. The causal connection from independent to 

dependent variable occurs in the closed-loop control model as the “forward” connection from 

independent to input variable and from input variable to comparison with the reference signal to 

production of the dependent variable (Figu. 4).   

Because the open-loop model focuses only on the “forward” causal connection from 

independent to input variable and from input to dependent variable, this causal path is predicted 

to be reflected in the correlation between these variables.  But in the control model the two-way 

Comment [dw6]: Insert Fig. 4 
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connection between input and dependent variable keeps this forward causal connection from 

showing up in the correlations between these variables.   

Contribution of Neural Noise 

Unlike the results for the human participants (Table 2), the input-input variable 

correlations produced by the closed-loop model are 1.0 at all levels of difficulty. The model can 

be made to match the correlations seen with humans through the addition of unfiltered random 

noise to the model’s output. The addition of noise with amplitude less than 5% of the output 

range brings the input-input variable correlations for the closed-loop model down to the same 

range as those found for the human participants (.2 in the conditions of Low and Medium 

difficulty and .76 in the condition of High difficulty). Interestingly, the addition of this noise has 

virtually no effect on the model’s tracking performance (the ability to control the input variable) 

due to the low pass filtering characteristics of a closed-loop control system. RMS tracking error 

for the model with random noise added still matches that of the human participants in all 

conditions of difficulty.  The level of noise added to match the input-input variable correlations 

for humans seems to be of the correct order of magnitude based on estimates of the magnitude of 

neural noise levels derived from neurophysiologic measures (Nakajima, Fukamachi, Isobe, 

Miyazaki, Shbazaki, & Ohye, 1978;

The possible closed-loop nature of the behavior in experiments can be seen by taking a 

closer look at the apparently open-loop behavior in a simple reaction-time experiment.  One 

independent variable in this experiment is the onset and offset of a stimulus, such as a tone; a 

dependent variable is pressing or not pressing a response key.  The open-loop view of the 

behavior in this experiment is simple: variations in the independent variable cause variations in 

 Miller & Troyer, 2002).  

Implications for Experimental Psychology 

The results of the present study confirm Powers’ (1978) conclusion that the independent -

dependent variable relations observed in psychology experiments will not necessarily reflect the 

nature of the causal connections involved in behavior if the behavior under study is closed loop, 

that is, if the observed behavior (dependent variable) has feedback effects on the sensory cause 

of that behavior (input variable).  This effect may be small in scientific psychology because most 

experiments are designed so that the behavior appears to be completely open loop. But there is 

reason to believe that the behavior in even the most obviously open-loop experiment may 

actually be closed loop (Marken, 2009).   
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the dependent variable.  The closed-loop view, on the other hand, starts with the observation that 

the onset of tones does not normally cause key presses; the participant must be given instructions 

about what to do when the tone comes on (and goes off).  The instructions for the reaction-time 

task tell the participant to press a key when the tone comes on but not otherwise. 

According to the closed-loop view, the instructions in an experiment define an input 

variable that the participant is to control, a controlled variable (Marken, 2005).  In the 

compensatory tracking task, instructions define the controlled variable as the distance between 

the cursor and target, which is to be kept at zero. In the reaction-time task, the instructions define 

the controlled variable as a logical relation between tone and key press, “true” when the key is 

pressed after the tone comes on (or not pressed when the tone is not on) and “false” when the key 

is pressed when the tone is not on (or not pressed when the tone is on); this controlled variable is 

to be kept in the state “true.” 

The closed-loop view of the behavior in psychology experiments can be tested using 

methods adapted from control engineering (Runkel, 2003, pp. 59–103; Powers, 2005, pp. 233–

251). These methods involve testing to see whether a hypothesized controlled variable is actually 

under control.  If these tests show that no variables are actually under control in an experiment 

then the behavior can be considered open-loop and analyses of the data based on an open-loop 

model, such as the GLM, are perfectly appropriate. If, however, these tests show that a variable 

is under control, then the behavior must be considered closed loop and a closed-loop model of 

the behavior is required.    

Improving Prediction 

The possible closed-loop nature of the behavior in psychological experiments means that 

the conventional approach to research may be based on an incorrect model (Marken, 2009).  If 

this be the case, then it could explain why it has been possible to account for only a small 

proportion of the variance of the behavior observed in conventional experiments.  The results of 

the present experiments show that the low effect sizes found in the typical psychology 

experiment could result from using an open-loop model to analyze what is actually closed-loop 

behavior.  This would happen if the tasks carried out in such experiments are so difficult that 

participants cannot keep the controlled variable under control.  In a reaction-time experiment, 

evidence of lack of control would be errors such as failure to press the key shortly after tone 

onset (a miss) or pressing a key before tone onset (a false alarm).    
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If the behavior in experiments is actually closed loop, then errors are equivalent to the 

deviations of the cursor from the target in a tracking task; they are a sign of loss of control.  

When control is poor in a tracking task—as it is when the task is made very difficult—the 

correlation between independent and dependent variable decreases.  Were the difficulty of the 

tracking task used in the present study increased to the point at which RMS error was nearly 

three times worse than that seen in the condition of High difficulty, the correlation between 

independent and dependent variable would be about –.6 (instead of  –.99). This independent-

dependent variable correlation gives an η2 of .36, which is close to the average η2 of .34 found in 

psychology experiments based on the open-loop model.  With the correct closed-loop model, 

however, it is possible to account for 99% of the variance of this apparently highly unpredictable 

dependent variable. 
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Fig. 1.  The open-loop causal model of behavioral organization. 

 

 

 

 

 

 

 

 

 

 

Fig. 2.  Closed-loop compensatory tracking task. 
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Fig. 3.  Example of temporal variations in the independent variable (disturbance), dependent 
variable (mouse movement), and input variable (cursor) during a one-minute tracking trial. 
 
 

 

 

 

 

 

 

Fig. 4.  Closed-loop model of tracking. 
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TABLE 1 
Mean and standard deviation of the independent-input variable and input-dependent variable 

correlations in the Low, Medium, and High difficulty conditions. 
 

Level of 

Difficulty  

Independent – input 

variable correlation 

Input – dependent 

variable correlation 

M SD M SD 

Low 

 

0.14 

 

.14 .11 .10 

Medium 

 

0.03 

 

.05 .07 .07 

High 

 

-0.25 

 

.12 -.02 .09 
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TABLE 2 
Mean and standard deviation of the input-input variable and dependent-dependent variable 

correlations in the Low, Medium, and High difficulty conditions. 
 

Level of 

Difficulty  

Input – input variable 

correlation 

Dependent – 

dependent variable 

correlation 

M SD M SD 

Low 

 

0.22 

 

.10 0.999 .00 

Medium 

 

0.26 

 

.10 0.993 .00 

High 

 

0.77 

 

.10 0.946 .00 
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