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1.0 Introduction: The Goalpath Navigation Problem

For ecological psychology it has been suggested that the perceiving-acting cycle should be the
smallest unit of analysis. We would like to amend this suggestion. -It now seems to us that the
smallest unit of analysis must be the perceiving-acting cycle situated in an intentional context.
What this means is the main topic of this paper.

To situate the perceiving-acting cycle under intentional constraints is to identify a space-time
context in which the actor selects a goal !, and then selects from all causally possible paths those
that are potential goalpaths, and from these the actual goalpath to follow. The generic problem,
therefore, is how best to describe the action of an organism. A successful action (henceforth
defined as a goal-directed behavior) minimally entails selecting a (distal) target and moving over a
space-time path in an intended manner to that target. This implies that the distal target and the
future goal-state of the actor must make their presence felt in the information and control
accompanying its current state. Thus somehow the distal must logically condition the proximal, so
that the actor’s changing relationship to the intended final condition acts to re-initialize (update) the
actor’s current condition. This is what it means for a space-time path to be a goalpath.

A careful consideration of these requircments suggests that a field of control-specific
information must exist in which the actor and the intended goal both participate. Furthermore, this
field of control-specific information must at the same time and in the same place be a field of goal-
relevant control. Hence each space-time locale in the field is characterized by both an information
value and a control value. Such values that go together in this dual fashion are said 10 be conjugate
information-control values. The relationship between the energy controlled and the information

* Also of Haskins Laboratories, New Haven, CT

1 We take goalpath knowledge to comprise both target information and manner determination—that is, specification
of where the target is located in space-time and delemination of the best manner of approaching it (Sec Shaw &
Kinsella-Shaw, 1988, for details) ’
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detected with respect 1o the goal is said to be adjoinr by nature—something all creatures are born
into because of evolutionary design. When this adjoint relationship, however, Jeads to successful
goal-directed behavior (something that often has to be leamed), then the adjoint relation of
information to control is said to have become self-adjoinr. 2

One recognizes in this problem of goal-directedness the need for what the Wiirtzburger
(imageless thought?) School of psychology called a ‘determining or organizing tendency'
(Einstellung). We call this Einstellung, when augmented with a boundary condition, an intenrion
because it is the goal-sensitive, agentive function (a cognitive operator, if you will) which
determines goal-selection and organizes the dynamics under a ‘control law’ designed to serve the
intention. 3

The existence of such a field of conjugate values, in which information and control might
become self-adjoint, would explain how everywhere that the animal might venture there are
opportunities for acting toward the goal in an intended manner (excluding, of course, those places
and times where the target is occluded or barriers block its accessibility). We shall show thar such
an information-control field has a natural interpretation in an adjoint information/control theoreric -
Sformulation of quantum mechanics.

As a step toward this field theoretic model, we postulate an intentional process which acts (as
an Einstellung) to set up a perceiving-acting cycle (along the lines discussed by Kugler & Turvey,
1987, and Shaw & Kinsella-Shaw, 1988). The actions that the perceiving-acting cycle might
generate over space-time define the causally possible family of goalpaths. Here intention, defined
25 a cognitive operator, tunes the perceiving-acting cycle by directing both the attention and the
behavior of the actor toward the goal. A coherent account of this intention-driven dynamics would
remove the mystery of how actors maintain informational contact with their goalpaths; namely,
they do so by direct perception when the goal is detectable, or otherwise, when not detectable (say,
over the horizon), they must navigate either by indirect perception or by direct perception plus dead
reckoning. For humans, indirect perception may be achieved, as Gibson (1979) suggests, by
means of verbal instructions, or by use of a map (with target coordinates specified), perhaps,
drawn or remembered. As nautical navigators discovered, however, a map alone is not adequate;
one also needs a compass to determine directions at choice-points, and a chronometer to satisfy a
schedule of departure and arrival times if contact with the goalpath course is to be maintained.

2 In this paper we will discuss the role of adj and self-adjoi in perceiving and acting in an intentional
coatext. We will not discuss, however, the nonlincar learning or ‘insight’ process by which adjoinmess becomes
self-adjointmess. That will have (o await further developments of the theory of intentional dynamics. But see Shaw
& Auey. 1977 and Shaw Kadar, Sim, & Repperger, 1992, for initial thoughts on learning.

3By ics (0 this central concept of the Wikrizburger school of act psychology, we
underscore Glbscn s (1979) acknowledgment that ecological psychology bas a close historical tie to this school
because both oppose the elementarism of the structiralists and emphasize process.
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Hence the approach proposed in this paper can be summarized as a field of conjugate
information-control values, with paths being generated by a perceiving-acting cycle which is
motivated and guided by insention as a field process. This account contrasts sharply with more
traditional accounts. Let’s consider the contrast:

Since animals presumably do not use navigation tools, then they (like humans without benefit
of maps, compass, and clocks) must rely on direct perception plus dead reckoning to perform the
same navigation functions. Traditional psychology assumes, not unreasonably, that under such
circumstances they direct themselves by ‘cognitive maps’ (where intended goals are somehow
attentionally distinguished from non-goals). The evidence for the existence of cognitive maps, one
might argue, is the actor exhibiting a ‘sense of direction’ at choice-points, and a “sense of timing’
which keeps the actor on schedule in arriving at and departing from sub-goals. Here the cognitive
modelling strategy proceeds by positing internal mechanisms that internalize the map, compass,
and chronometer functions. Regardless of either the truth or usefulness of such internal
constructs, the success of the internal state modelling strategy is predicated on a successful actor’s
having access to goal-specific information and goal-relevant control along the goalpath. The field
notion also putatively captures the sense of the social invariance of the information and control
opportunities which

(a) allows an observer to see which goal an organism is most likely pursuing, and

(b) allows different organisms 10 compete for the same goal.

Hence one may debate whether the field of information and control manifests itself internally
(as cognitive psychologists maintain), externally (as behaviorists have maintained), or dually (as
we ecological psychologists propose), but the field's existence is without question, being assumed
by all parties alike. (See Shaw & Todd, 1980; Shaw & Mingolla, 1981; and Shaw, Kugler, &
Kinsella-Shaw, 1991, for a comparative description of these alternative approaches).’

Regardless of whether navigation is achieved by direct or indirect perception, the actor's
control process must maintain invariant contact with the intended goal over some dynamically
developing course of action—a potential goalpath. Consequenily, a theory is needed for what
constitutes goalpaths, and how they are recognized, selected, and followed. We assume that a
goalpath is generated, as a segment of a worldline in space-time, by the actions of the perceiving-
acting cycle engaged by the organism. Before considering the details of how this engagement is to
be formally characterized, we consider the general inmitions that underwrite the intentional
dynamics approach to this problem.
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1.1 Modelling Systems that Exhibit Intentional Dynamics

Intentional dynamics inter alia faces two problems:

First, how is the perceiving-acting cycle comprising a dual relationship between information
and control to be formally described? In Section 2 an answer is proposed from the perspective of a
variant on optimal control theory called adjoint systems theory (Shaw, Kadar, Sim, & Repperger,
1992). '

Second, how is the field of conjugate information and control values available to the
perceiving-acting cycle to be made formally explicit? Here we borrow from quantum mechanics
the image of a particle being involved in measurements as it moves through a field toward an
attractor.4

The goal of Section 3 is to provide the generic mathematical description of an organism with a
complex interior, being driven by internally produced forces and guided by externally available
information onto a goalpath toward a future goal-state. This image of a complex animate ‘particle’
exhibiting intentional dynamics in a field of information and control replaces the standard image of
a particle with a simple interior, being driven by outside forces onto a -‘least action’ path that is
indifferent to any future goal state.

Given an actor at some space-time location who intends to connect with an accessible target at
some other space-time location, then there will exist a family of causally possible goal-paths. This
set is bounded in space-time by the maximum rates of causal action allowed by the (e.g..
locomotory) capabilities of the agent who intends the goal. For convenience, we call such a
bounded region of goalpath possibilities, an 2-omega ) cell —a construct of ecological physics
which falls between the cosmological scale and the quantum scale (Shaw & Kinsella-Shaw, 1988).
At each moment, along each path there is a certain amount of energy the agent must control if the
action is to be in the goal's direction. The amount of control is perceptually specified at each of
these points on each goalpath by goal-specific information. What form does this specification
take?

This question poses, in part, a version of the so-called ‘inverse dynamics' problem for
psychology (Shaw, Kugler, & Kinsella-Shaw; 1991), whose solution has been discussed
elsewhere (see Saltzman & Kélso, 1987; Shaw, Flascher, & Kadar, in press). Butsince the agent
could be on any one of a number of paths, then some perspectivally weighted information and

4 Strictly speaking there is no attractor as a minimum on a physical manifold located solely in eitber the
environment or the ocganism (construed as exterior and interior fields, respectively) that can be the goal of the action,
in the foll meaning of the term. Raﬁermemmdymk:gommnggod-@wednesmuﬂbedefmcdmthe
ecological quotiers manifold (exteti of fro of freedom) where the flow of generalized
action is Jocated (see Shaw, Flascher, & Kadar, in press). Toomh:owledge,thaexsnod:smouofdnstaﬂm
the literatore where goal-directed behavior is attributed to dynamics on a physical attractor basin. The solution called
for must be much more abstract. 1t must be defined over organism and environment, rather than either alone. Hence
itmust be an ecological physics manifold.
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control quantity must be available at each point on each possible path. Quantum physics (as
discussed in Section 3) offers us a lesson on how to do such weighting.

In Section 2, in preparation for the quantum field treatment, we show how, even in classical
physics, a single quantity exists as an inner (scalar) product of information and control which is
defined at each point along the goalpath (Shaw, Kadar, Sim, & Repperger, 1992). We offer the
following intuition as to what this means: From the internal frame of the actor, one might think of
the control-specific information as a wave crest that accompanies the moving agent at each point
along the goalpath—from initial to final condition. Let's call this a 'knowledge wave' since it
embodies all the dynamical knowledge about the goal (namely, Where it is and how to get there)
available to the actor as an acting perceiver.

Alternatively, from an extemal frame of a scientific spectator, one might think of the
knowledge wave’, as it moves over the distribution of possible paths, as specifying at each point,
on each path, the likelihood that a perceiving-actor, who intends the goal, will be found there.
Hence intentional dynamics assumes that well-intentioned, normally competent actors will tend to
80 where goal-specific information is most likely to be found and goal-directed consrol is most
likely to be achievable. Our aim in this paper is to show that the existence of such a knowledge
wave' is by no means fanciful under the conception of intentional dynamics, as developed by us in
earlier papers—although such a dynamical construct as a knowledge wave' has not before been
introduced. Consequently, all the mathematics that follow are designed to explicate this intuitive
interpretation. Our aim will be to show that when the knowledge wave embodies information and
control that are only adjoint with respect to the goal, then the actions tken can at most be relevant
but unsuccessful. However, when they are self-adjoins, then the actions are, by definition, both
relevant and successful. 5

Before mathematdcally developing this new explanatory construct, let’s consider the current
status of the theory of intentional dynamics that has c.merged over the past five years or so. The
purpose of the next section is twofold: To clarify what one might mean by the claim that acrions
must be siruated in an intentional context and 10 give an overview of the problems that a theory of
the intentional dynamics of such situated actions must face. We also indicate the extensions to the
theory proposed by the current effort.

1.2 Intentional Dynamics: An Overview

In earlier work we proposed representing the perceiving-acting cycle of an actoras a
continuous (Lie) group of complex involutions. This approach draws its inspiration and borrows
its mathematical techniques from classical mechanics (e.g., Goldstein, 1980). The virtue of the

5 This notion of self-adjointness has been developed elsewhere under the guise of reciprocities of an intentional
sysiem (Shaw, Kugler, & Kinsella-Shaw, 1991).
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continuous group representation is that it allows one to characterize the 'intentional’ action of
systems as the ‘flow dynamics' of a generalized Hamiltonian action potential which follows paths
dictated by a "least action' principle. We have called this generalized approach intentional

dynamics and attempted to clarify<the notion of the new action potential as follows (Shaw, Kugler,
& Kinsella-Shaw, 1991):

For a flow to exist [over a goalpath], there must be a force. A force can be defined as
the gradient of some potential. In some sense a goal can be said to exert an atrractive
force on the system. The sense we suggest is as some kind of potential difference
between the endpoints of a goal-path. For this to be more than mere metaphor, we must
find some way of allowing the interior gradient of the organism’s metabolic potential to
interact with the exterior force field of the environment. This can only take place through
the detection of perceptual information which, in turn, must guide the controllers of the
neuro-muscular actuators. Hence the relevant potential difference, or goal-gradient, can
only be defined over an interior (metabolic) potential relating the initial state of intending
the goal to the final state of arriving at the goal. This gradient must also reflect the
difference between a system’s current manner of behavior where it is and the desired
manner of behavior where it wants w be.

The trick is to get the interior gradient and the exterior gradient linearly superpased so
that their resultant is the desired goal-gradient. But this raises another problem. What
kind of strange potential is the goal-gradient to be defined over? What is this superposed
potential that is neither solely energy nor solely information but both? We call the
resulting potential a generalized action potential. Whatever this generalized potential is, it
is what flows in bi-temporal directions, between the interior and exteror frames, over the
perceiving-acting cycle. Furthermore, it is also what must be conserved under the
intentional dynamics of any system when successfully seeking a goal (pp. 595-596).

In Shaw, Kugler, & Kinsella-Shaw (1991), we proposed a way that this ‘trick’ of superposition
might take place. Furthermore, it was shown how such a generalized action potential might exist,
as well as how such a quantity might be conserved (under the Liouville theoremn) as a fundamental
dynamical invariant of intentional systems.

On the other hand, this ‘classical’ approach failed to make clear how a particular goalpath is
selected by the system from all causally possibie goalpaths; rather we described mathematically
only how the perceiving-acting cycle might move down which ever goalpath was selected. Asin
the original paper by Shaw & Kinsella-Shaw (1988), the ‘extraordinary boundary conditions'
posed on a dynamical system by the selection of a goal are not defined, only assumed. In the
Ppresent paper we seek to remedy this problem. Here we offer an explicit mathematical description
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of how an actor’s intention to pursue a goal automatically does two things: First, the intention 1o
act imposes the ‘extraordinary’ information and control boundary conditions on the action taken,
and, second, the action selects if not the actual goalpath, ther. the most probable one to be
Jollowed.

Furthermore, we need to show how gaﬁng the appropriate mathematical description of the
generalized action potential assigns a probability value to each path in the distribution of potential
goalpaths. The probability value provides a likelihood estimate of the path being selecied by the
perceiving-acting cycle as the ‘best’' route to the goal, given the confluence of environmental and
biomechanical constraints. "Best' here means the practicable compromise between the
mathematically ideal and the physically achievable, what can be thought of as the tolerably
suboptimal path (Shaw, Flascher, & Kadar, in press). But how are information and control to be
coupled to form a perceiving-acting cycle that can select such a goalpath?

Between the moment of the intent to pursue a goal and the successful attainment of the goal,
there exists a functionally defined, space-time region in which the intentional dynamics of the actor
is well-defined. In four dimensional geometry any dynamical process is represented by an event
which develops over a worldline segment. To understand intuitively the geometry in which goal-
directed actions take place, one might first build a geometry for events (Shaw, Flascher, & Mace,
in press). For example, Figure 1 shows the standard light cone from the Minkowski rendition of
special relativity. (Here the third spatial dimension is omitted). The backward temporal cone,
called the domain of (causal) influence, indicates all those events 6 in the past that might causally
affect the event at the origin (vertex). By contrast, the forward temporal cone, called the domain of
(causal) dependence, indicates all thcse events in the future that might be affected by the event at
the origin.

Qinsert: Figure 1: A Minkowski Light Cone)

The standard light cone is not adequate for depicting goal-directed behaviors since its worldlines
are unbounded. Instead, we nced a new four-dimensional geometry in which the worldlines
representing goal-directed actions are bounded by endpoints. Figure 2 depicts this new geometry.
Imagine, for sake of fllustration, that you are given the task of spinning a turntable manually
through four successive half-trns (4 x 180°). The kinematics of this goal-directed action is shown
below.

6 In space-time there are point-events and worldline paths for ongoing processes. Here we considered events to be
finitely bounded segmients of workilines.
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(Insest: Figure 2: An 2-cell Geometry for a Goal-directed Action)

The Q-cell's four dimensional geometry is 2 lattice structure, and therefore has three possible
partitions (see Figures 2 and 3): the maximum partition, or least upper bound, noted by Q-cell =
©Omax, the minimum partition, or greatest lower bound, noted by a-cell = Wmin, and the
intermediate partitions, noted simply by @-cell =@ Thus, in general, any form of goal-directed
behavior will have a lattice structure within the geometry of the Q-cell as indicated by

Q-cell = Omax 2 B2 Omin = a~cell.
In the turntable task, the Q-cell partition corresponds to the overall intention of rotating the
turntable through 720°; the @-cell partition corresponds to the subgoals of rotating through two
full rotations (2 x 360™); and the a-cell partition comresponds to the four 180" ballistic rotations
(below which no choice-points are possible). A similar analysis generalizes to any goalpath with
any number of partitions.

(Insert: Figure 3: A Schematic $2-cell Showing its Nested Partitions)

An econiche for an organism (or species) is defined by how it lives in its habitat. Affordances
present opportunities for action since they are possible goals. The character of an econiche is
determined by its affordance structure. Indeed, an econiche is its affordance structure.

Effectivities correspond to the means required to carry out a conuol law by which an affordance
goal is realized (what Gibson, 1979, referred to as a rule for the perceptual control of action). The
repertoire of effectivities possessed by an organism determines what kind of actor it is. Indeed, an
actor is jts effectivity repertoire. In this sense, an ecosystem is the union of the affordance
structure of an econiche and the effectivity system of an actor (or species of actors). A siftuation
refers 1o where the relevant causal and informational constraints for an action exist. An occasion
refers to when the need or value motivating the action is felt. An effectivity is brought to bear on an
affordance goal when the actor intends to act so as to satisfy a motivating need or value.

All these ingredients (need or value, affordance goal, effectivity means, and intention, together
with the implied forces to be controlled and information to be detected) must become a coherent
unit of analysis if the intentional dynamics of an entailed action is to be understood. The theoretical
construct under which all this comes together as an organized whole is, of course, the Q2-cell.

An organism's life as an actor is a ‘tiling’ of space-time by a concatenation of Q-cells whose
partitions parse the worldline of the actor from birth to death. Intentions are choices of affordance
goals which functionally create the Q-cells to be entered and hopefully crossed. The crossing
requires the ‘assembling’ of an effectivity to engage, direct, and tune the appropriate perceiving-
acting cycle to the exigencies of the task situation. The o-cell partitions of an 2-cell represent the
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tolerance limits on information detection and energy control—below which a kind of Heisenberg
uncertainty is encountered. The @-cell partitions designate those choice-points in control where a
bifurcation set of possible paths exists. Here the actor, given an up-date on perceptual
information, can alter the manner of approach to a sub-goal without abandoning the global goal
defining ghe parent Q-cell. These are the minimal constitents that must be captured in any theory
of the intentional dynamics underwriting goal-directed actions. These intuitions are made formally
explicit in Section 2 and 3.

Although functionally defined, Q-cells have an objective reality. They determine the
boundaries on behaviors which are tolerant of the same goal (i.e., target plus manner). Such
nonlocal goal constraints have the same ontological status as forces in physics, for which evidence
is also only functionally defined as a relationship between masses and their observed accelerations
(direction and speed). The tolerance class of goalpaths (ic., each being a velocity field) are
parametric (manner) variants whose underlying invariant is their common goal-directedness.
Where the affordance goal determines the final condition which constrains the resultant direction of
the paths, the effectivity chosen determines which of the possible goalpaths within the Q-cell is to
be followed. Hence, in the case of a successful goal-directed behavior, an affordance goal—a
functional property of the environment— is always complemented by an effectivity-— a functional
propesty of the actor. The intention, as a cognitive attunement operation, brings the necessary
control and information to bear on the biomechanics of the actor. So long as the intention remains
invariant, and ceteris paribus, the actor is perceptually guided down the goalpath.

Others have attempted to explain goal-directed behavior, but without the Q-cell construct to
consolidate the ‘common fate’ or 'determining tendency’ of the variant but goal tolerant paths, linle
mathematical progress was possible (Ashby. 1952; 1956; Sommerhoff, 1950; Weir, 1984; Rosen,
1985). By building our theory of intentional dynamics around this fandamental concept, we show

‘how the perceiving-acting cycle might be situated in an intentional context.

In the next section, we show how the perceiving-acting cycle can be modelled as a set of
adjoint differential equations. Here the Q-cell makes its appearance indirectly under the guise of a
famous theorem regarding adjointness in control theary—the Kalman Duality theorem (Kalman,
Englar, & Bucy, 1962). Finally, in Section 3, we show how the Feynman path integral approach
(a version of quantum mechanics) can be combined with a generatized form of the Kalman Duality
theorem. By doing so, we endeavor to obtain a complete and coherent account of the intentional

dynamics by which a perceiving-actor knows' how 10 select the ‘best’ goalpath from among all
possible alternatives.
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2.0 The Classic Adjoint Systems Approach to the Perceiving-acting Cycle

Let us begin by anticipating what this section will show. A perceiving-acting system might be
represented by a pair of dual differential equations—with one equation representing the system's
control of energy and its adjoint €quation representing its detecting of information. The pair of
such equations are said to be temporally dual when self-adjoint because the original system
exhibits a flow of time-forward control over the same space-time path that its adjoint system
exhibits a counter-flow of time-backward information. Figure 4 portrays schematically the self-
adjoint relationship proposed for information and control equations. Note how these quantities
‘flow’ in opposite temporal directions—with each endpoint doing double duty, serving as a
repellor for one quantity and an attractor for the other quantity.

(Insert: Figure 4: Temporal Self-adjointness of the Information and Control)

2.1 The Differential Approach to Adjoint Systems

The original control system equations are represented by a set of simultaneous differential
equations written in matrix form, called a state vector differential equation as follows:

Xt)=A (t)x(r) + B (£ )u(r) with x(s) specified, .0

which includes: (a) the derivative of a column matrix, £(t) = d/ds, representing the rate of change
of state of the system; (b)an n X n square matrix, A(t ), which with another column matrix
consisting of n-state variables, x(t ) (called the original state-vector) represents the system to be,
controlled; and (c) an n X p matrix, B(t ), which with a p x I matrix of inputs, u(r ), represents the
control vector which sends the system into a new dynamical state configuration. Thus the vector
(matrix) difference equation depicted in eq. (2.1) relates the rate of change of state of the system to
the current state of the system and the current input signals. This differential equation is
inhomogeneous and, therefore, represents a nonautonomous system because of the existence of
B(t ) uft }—a time-dependent control (forcing) term. We want to sotve this equation to see if the
specified control vector will send the system from a given initial state at x(%p) to an intended final
State at x(1;) over an intended goalpath (defined by the intended manner of approaching the intended
target).

The solution to this system, called the steering function, is given by the inhomogeneous
integral equation

t
x(t)= @ (9 x (tg) +f @(t,5)B(s u(s)ds
1o (2.2)
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where @ (1, tg )and @ (1, 5 ) are the state-transition (or fundamental) matrices of the free
(autonomous) system g_iven by

xt)=Al)x (o) . 2.3)

defined over the interval [to, . Associated with the system depicted by eq. (2.1)isan
observation vector y(#), an m component vector which satisfies

y@)=H@)x() 2.4)

where H (t ) is an m X m matrix relating the observation vector y(t) to x().

Before presenting the associated adjoint equations of information, one should note that the
notion of adjointness is strongly dependent on the given space within which it is defined. Here the
adjoint system is presented without any generic definition being given. (However, a specific
definition is given'in Appendix A.)

If the system of control equations is real, the adjoint system associated with egs. (2.1, 2.4) is
given by

a(t)=AT®)a@)+H)v (@) @.5)
and

tM)=BT@t)a() (2.6)
oft) is specified and egs. (2.5, 2.6) are integrated backwards in time. The superscript ‘T"indicates
matrix ranspose (or its conjugate in the complex case). One can now define the dual properties of
system eqs. (2.1, 2.4; 2.5, 2.6), such as, complete controllability and complete observabiliry, by
which the role of action and perception in a goal directed (intentional) behavior can be modeled. In
addition, one can also define the inner product operator, the means by which perceptual
information can be scaled to the control of action.

2.2 Controllability, Observability, and the Inner Product Operator

Definition: The action of the system, represented by egs. (2.1, 2.4), is completely controllable if
there exists some input u(z) which takes the system from any initial state x{%) to any other state
x(t7) in a finite length of time ;> tp. This property holds if the following matrix is nonsingular for
some > tgx
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U4 .
W(to, 4 = f ® (1) B©BT0) &g s .7

T
The measure of complete controllability is related to the minimum amount of control energy u(t)
necessary to transfer x(zo) to x(t) in tr-1p seconds.

Of interest 1o determining the optimality of the control is the degree to which the amount of
work done approaches the minimum. For this one needs an equation defining minimum energy:
Min E=x (e)W eot,) x (). 2.8
Small values of W(, tatp imply little controllability, since large amounts of energy are required to
wransfer x(fo) 10 x(fy) and conversely.

Perceptual information guides action; hence a duality must exist between the energy required
for control and the information that provides the measure of control. Such a measure is guaranteed
by the duality of complete controllability to complete observability. This condition is defined next.

Definition: A system's state path is said to be completely observable if it is possible to determine
the exact value of x(zg) given the values of y(t) in a finite interval (£ ty) where iy < ¢y. . The
original system represented by eqs. (2.1, 2.4) is completely observable if the following matrix is
positive definite for some &> to:

¥
Mg )= f @, roH@) H(e) 9, rokds 2.9)
b

It is important to note that there is a close relationship between these system properties. ]
A system is completely controllable if and only if its dual (adjoint) is completely observable. (See
Lemma 1 in Shaw & Alley, 1985; Shaw, Kadar, Sim, & Repperger, 1992, p. 21.)

Analogous 1o the case of minimum energy, one can ask what happens to information when the
system successfully achieves control of action with respect to some goal. Given the duality of
complete observability with complete controllability, then whenever energy is minimized
information must be maximized. Thus, the measure of complete observability is related to the
maximum amount of perceptual information as follows:

Max Info = y™(gy M-\(ty, to) Y(tp- @.10
We have now arrived at the famous Kalman Duality Theorem:

The Kalman Duality Theorem: Complete observability is dual with complete controllability.
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Corollary: Therefore if energy is minimized, then information must be maximized.

The lastitem of interest is the inner product of the original system with its dual, for it praovides
a global measure of the amount of control exercised as compared to the amount of information
detected over the task interval
Definition: Inner Product Operator is a bilinear function defined over any pair of elements

(x and y) of a vector space

Goy=x"y, Q@11

Using the above definition, the inner product over the states of the original system and its adjoint
happens to be a dynamical invariant. In other words (x, &) = x7@= ¢ (a constant).

These resuits may be further generalized. They can be extended to systems with hereditary
influences, sometimes called systems with retardation, or time lag. (For further detils consult
Shaw & Alley, 1985; Shaw, Kadar, Sim, & Repperger, 1992).

2.3 The integral approach

It is well known that all differential equations can be formulated as integral equations. Using
the operator notation, the inverse relationship between the differential equations and integral
equations is made even more transparent. For this reason, and for its simplicity, the operator
formulation is used. Let us consider the following second order differential equation as an
exemplary case.

Lyl = p{x)y "+ q(x) y''+ r(x) y = g(x) 2.12)
where L denotes the second order differential operator
L = p(x) d%/d?% + q(x) d/dx + r(x), thatis L : y(x)-> g(x). (2.13)

From the operator formulation naturally emerges the idea of using the inverse L- operator to find
the solution of a particular differential equation. The inverse operator will be an integral operator

L"[g(x)]:f Glx, f)g(r)de. (2.14)

Recall the eq. 2.1 (here rearranged) for the actor's control system

i(e) - A(Dx(e) = B{t)u(t) with x(to) specified 2.15)
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Using the differential operator notation this takes the form L{x(t}] = B(t)u(t),

The solution given by integrating the above differential equation (eq. 2.2) was (shown rearranged)

t
x(1) - e, &) x(r0) = I &1, 5) B(su(s)ds. (2.16)

ta

From this specific example, we can see the role played by the Greens function by going toa
generic form: The G kemel function is called the Green's function of the operator L. For the given
control equation, the inverse operator takes the form,

13
L-AB(u ] = f 1, s) B(s)u(s)ds . 2.17

{o
Here the &1, s) plays the role of the G kemel .7

Consequendy, the right hand side of eq. 2.14, the integral part, represents the superposition of
the intrinsic, quantized influences localized within the scope of system’s law, as expressed in the
integral form. That is why the Green's function is often called the influence function (Greenberg,
1971). Unfortunately, in practical application there are severe difficulties with this technique (see
Appendix A).

2.4 Self-adjoint System Equations

Why is the adjoint system not adequate as a way of modelling the perceiving-acting cycle?
Because adjoint system equations have terms representing sources of extrinsic influence. We need
to make a transition from adjoint systems with extrinsic influences to a stronger form of adjoint
systems, namely, to self-adjoint systems. To achieve the self-adjoint form, however, one must not
only getrid of the extrinsic sources of influence but satisfy certain symmetry conditions as well
Self-organizing systems are conditionally isolated: that is, they sometimes act solely in accordance
with intrinsic constraints because they are self-adjoint. (But take care, the physics of adjoint
systems as compared to self-adjoint systems is complicated. Here we have used a simplified
approach. For a full discussion of the issues, see Santilli, 1978; 1983).

Definition: A system is self-adjoint if it coincides with iLs_ adjoint.

7 Greens on techni vides a method for ‘absarbing' a forcing function, We can indeed find 2 G
funa.iT: for the ;‘5‘;‘? and g, :u‘cehprl:a L(G) = &x"-x), where § isglhc Dirac delta Won. then the solution y(x) of
the equarion L(y) = g(x) will be y(x) = L {g(x}] = [G(x’, x) g{x')dx". To iNustrate: givea a differential equau'.o:e,
where g(x) is a forcing term on the otherwise homogeneous, L{y J= 0 equation, G(x', ) g(x’)dx’ now replaces
extrinsic forcing term.
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How one might obtain the seif-adjoint equations for a conditionally isolated system? They may
be obtained using Greens function technique and selecting the proper transformations (Santilli,
1978; 1983). Shaw & Alley (1985) formulated the information and control relationships between
an organism and its environment as a dual pair of dual integral equations (See Table I). These are
self-adjointintegral equations because they have symmetric kemels. The 2 x 2 symmetry of these
kemels represents the bi-directional propagation of information and control over the actor's
perspective and the environmeat's perspective (see Table IT). In psychological terms, these have
been identified as propriospecific (organism referenced) and exterospecific (environment
referenced) forms of information and control. And in addition to these, one can also identify their
interaction terms (see Shaw, Kugler, & Kinsella-Shaw, 1991) 3

(Insert: Table I: The Integral Equations Representing the Perceiving-acting cycle)
(Insest: Table I: The Adjoint Operators Representation of the Perceiving-acting Cycle)

2.5 Why a Quantum Approach is Preferred over the Classical Approach

So far we have presented only one half of the "stofy", namely, we discussed dual adjoint
systems rather than the dual pair of dual systems. The need for the four component subsystem
equations suggests that the underlying structure is the complex involution group. Thisis one of
several motivations that lead us from the classical adjoint-control theory o the complex Hilben
spaces and the quanmm theory of psychological ecosystems thereby entailed.

Another motivation for moving to a quantum mechanical interpretation of intentional dynamics
¢an be understood from Feynman's attempt to answer a problem with the classical approach raised
by Poincare” (1905/1952). In Chapter VII of Science and hypothesis and echoed by many others
ever since, Poincare’ remarks in passing that the assumption-of the principle of least action by
which one passes from force-based mechanics to a potential (energy)-based mechanics involves an
offense to the mind:

“The very enunciation of the principle of least action is objectionable. To move
from one point to another, a material molecule, acted upon by no force, but
compelled to move on a surface, will take as its path the geodesic line—i. e., the
shortest path. This molecule seems 10 know the point to which we want to take it,
tp foresee the time it will take to reach it by such a path, and to know how to choose
the most convenient path. The enunciation of the principle presents it to us, 5o to
speak, as a living and free entity. It is clear that it would be better to replace it by a

% These integral equations arc directly related (o the differential equation approach (o adjoint systems by Shaw,
Kadar, Sim, & Repperger, 1992).
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less objectionable enunciation, one in which, as philosophers would say, final
effects do not seem to be substituted for acting causes™ (p. 128-129).
If one replaces the word ‘molecule’ with the word 'actor’, then hardly a better description of a
system with intentional dynamics is to be fo'und‘ anywhere. But here it seems inappropriate, for it
amounts to anthropmorphizing inanimate particles. The danger that the variational approach to
mechanics might tempt theorists to anthropomorphize particles is still recognized today. Feynman,
who developed a vérsion of quantum mechanics which addresses this issue expressed this
problem:
“It isn't that a particle takes the path of least action but that it smells all the paths in the
neighborhood and chooses the one that has the least action by a method analogous to
the one by which light chose the shortest time™ (Feynman, Leighton, & Sands, 1968;
p- 9. chpt 19). 9

Our goal in the following sections is to show how a move to a quantum mechanical approach
removes the ‘offense to the mind' that concerned Poincare' and others. It does so by making
plausible the thesis that behaviors of particles follow probabilistic waves rather than having a
simple location on a force gradient. Through constructive and destructive wave interference the set
of possible trajectories of the particle coalesces around the classical path of least action, indicating,
not where the particle is, but where it is most likely 10 be found. The outcome of this move to
quantum field theory is that the particle is constrained to the path observed, making it unnecessary
for the particle to select its own path. Here, however, determinism (simple location and certainty)
is traded off in favor of a wlerable degree of indeterminism (distributed location and uncertainty).

Formally, we need to provide the generic mathematical description of an organism with a
complex interior, being driven by internaily produced forces and guided by extemally available
information onto a goalpath toward a future goal-state. This image of a complex animate ‘particle’
exhibiting inteational dynamics in a field of information and control replaces the standard image of
a particle with a simple interior, being driven by outside forces onto a ‘least action’ path that is
indifferent to any future goal state.

The move to the quantum mechanical approach, vis a vis the Feynman path integral, provides a
way to conceptualize how a particle 'selects’ the classical stationary path (up to Planck’s constant).
We shall use this technique to explain how an actor having access 10 a field of information and

9 A'lsocmsidermemermmlquac: " The mechanism by which the particle selects the physical trajectory of
stationary action is not at all clear. The initial velocity is nor given, so that the particle will not know’ in which
direction © start off and how fasi 10 g0. It is not clear how the particle can feed out' all trajectories and ‘choose’ the
sationary one. It should be kept in mind that classical physics does not recognize any path other than the stationary
Ppath. Thus, out of 2 whole set of nonphysical' paths, introdaced a priori, the classical principle of stationary action
sclects a unique physical trajectory through some mechanism which is not readil " (Narlikar &
Padmanabhan, 1986; p. 12) Y appareat” (O
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control selects the goalpath it does. Only here, the global field constraints express, to a large
extent, the intention of the actor rather than just the forces imposed on the ‘particle’ by the
environment. The actor, through detection of information about an intended affordance goat,
selects the boundary conditions (the Q-cell) for the field by which it controls its action, by means
of the effectivity engaged. The field is the bounded Einstellung (‘determining tendency’ plus
boundary conditions) authored by the actor’s intention, under the appropriate affordance-effectivity
compatibility condition.

The inanimate particle, on the other hand, has to take whatever field that nature hands it. Put
differently: The relevant wave which coalesces around the ‘animate particle’ is not merely a focus .
of global forces that completely controls its actions, but rather a knowledge wave, consisting of
information as well as forces that allows it informed control. In more psychological terms, this
explains how intentional dynamics can situate the perceiving-actor in an intentional context (an
Einstellung = an Q-cell). 10

3.0 Quantum Mechanical Approach to Intentional Dynamics

The new strategy, which we propose to adopt, originates from a unique approach to quantum
mechanics suggested by P.A.M. Dirac and developed by Richard Feynman (Feynman & Hibbs,
1965). This new approach, called the Feynman path integral, involves the formulation of the
quantum mechanical behavior of particles in terms of generalized, or distribution, functions
(Schwartz, 1950, 1951). Disuibution functions (e.g., Dirac delta function or Heaviside function)
are defined only under integrals. The Feynman distribution function!! is defined under a special
class of integrals that describe the sum over all possible path histories that a given particle might
have had!

Our thesis is that perceiving-acting systems follow paths chosen from among a family of
possible paths in the same manner that Feynman particles do. There is a major difference,
however. For systems that are not just causal, as particles are, but are both causal and intentional,
as perceiving actors are, then we must not only sum over their possible path histories but, dually,
over their possible future paths as well. This is the way that controllability (i.e., causal) and
observability (i.c., intentional) are represented under the Feynman path integral approach. By

10 Ler's be clear about what claims we are making about the ontological status of the knowledge wave” field that is
encompassed by the Q-cell and set up by the actor’s inteation. It is not objective in the sense of being in the
eavironment; nor is it subjective, in the sense of being a cognitive ‘map’ oc other mental construct. Surely, this
ficldis ity supported by both nearodynamical and physical processes, and structured by psychologicat
processes—ihe 'determining tendencies' (e.g., values, needs, beliefs, etc.) of the actor. In this sense, it is
functionally defined at an ecological scale which comprises all these processes.

11 In the equation for the Feynman path integral, the distribution function, Dx(1), replaces the ordinary d(x). Sez eq.
(3.33). Later, in dualizing the path integral for the purposes of inientional dynamics, Dx(0) will be interpreted as
Dx(} which is td be interpreted as being simultancousty Dx(+t) and Dx(-), that is, as running in both temporal
directions over all paths in the distribution.
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dualizing this distribution function to express the temporal bi-directionality of information and
control, the Q-cell is automatically and necessarily obtained.

Itis well-known that all the properties of quantum mechanics can be derived from cither the
Schrédinger wave equation approach, the Feynman path integral approach, or Heisenberg's matrix
approach. The formal refationship of the differential approach and the integral approachto
quantum mechanics is the same as the relationship of self-adjoint differential equations and the
symmetric kemnel integral equations.!2 (We shall be interested, for reasons that will become
apparent later, in comparisons of only the first two approaches.) In other words, the differential
(wave) equation and the (path) integral equation approaches provide formally equivalent
descriptions. There is, however, an important difference between the two approaches. In the first
case, the differential wave equation is a generalization of Newton's laws giving a step-by-step
development of a particle's path in a manner that confounds dynamics and initial conditions. In the
second case, the path integral approach is a generalization of Hamilton's variational approach
giving a path-by-path account of a particle's possible histories, but in a manner that allows
dynamics and initial conditions to be separated. 13

Hence if the conditions that initialize (or finalize) a path are to be studied independently of the
dynamic laws by which the path unfolds (causally by control or anticipatorily by information), then
it is advisable to assume the path integral approach and 0 derive the wave equation applications
from it. In this way, the probability amplitudes might still be of service, as we shall see, and one
avoids loss of separation of boundary conditions from the dynamics. Thatis, it allows the
boundary conditions on intentional dynamics, the Q-cell, 10 be treated as a separate but related
problem.

3.1 The Differential Approach to the Adjoint Quantum Mechanical Model

Thus, depending on the problem, we can use either of the two methods in formal analysis.
However, 10 make clear the modelling lesson to be learned from quantum mechanics, and how
quantum mechanics refates to the adjoint systers approach, the differential approach proves

12 1¢ should also be noted that there is a formally analogous relationship between the Hermitian (self-adjoint) matrix
approach of Heisenberg's matrix mechanics and the adjoint differential equation approach of Schrodinger's wave

B3 Though mathematically equivalent, the wave equation and path integral ¢quation are not physically equivalent.
'ﬂief!mcmm V(X 1) depends both on the dynamics and on the initial condition y(x;, £7). As shown in eq. (3.1),
'h_ﬂ‘“mwaymsepamcwtwoaspeasohphysicaldesaipdm. Narlikar & Padmanabhan (1986) explain it
this way: “There exist physical situations in which we would fike to study dynamics of the system without
committing ourselves 1o any particular initial conditions. The kemnel is the most suitable for such cases, since {eq.
3.4] clearly scparates out the initial conditions from the dynamics, In short, the kemel is independent of the initial
amcﬁqmsmdmmmmedynamimwﬁlcmemvefuncﬁmy(q,t)depmdsonbodnhedymmicmdmehhial
oundinpns' (p25). (Equation numbers are for the cument paper.) Also, where no wave equation can be construcied
;h:a:; _lnmdcm of end-points, a path integral can be. (Sec Feynman & Hibbs, 1965, for the construction of such
1! .
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simpler and more convenient. Most importantly, adjointness belongs to properties in the
Schrodinger equations that are more transparent. To illustrate this point, examine the Schrédinger
equation (3.1) for a particle moving in one dimension in a poteatial field and then compare eq.
(3.2) With it's (complex) adjoint in eq.(3.3.):

tor . G.1)
This equation is one specific form of the general Lagrangian

hoy

oy
= Hy or equivalendy ih—= Hy
P or o ot

32
where H represents an operator, called the Hamiltonian operator. Similarly, their complex
conjugate (adjoint) equations

l?—ai,=H‘V or equivalendy -ihﬂ= H*y

P ot (33)
can also be formulated. (Note: The "*' is used in quantum mechanics to denote complex
conjugacy.) For the Schrédinger equation, the generic form of the associated integral equation will
be (see more detailed discussion in Section 3.5)

W(x2 1) = [K(xy, 130 x1, 11) Wixy, 01) dx (3.4)
where
T
K(xz, 12; 11, 1) =J i)l i a1l D{i) (3.5
T

This equation provides the standard way to show the equivalence of the differential and the path
integral approaches. By simple differentiation in (+) time yields the Schrodinger equation. (For
ease of presentation, the derivation of the dual Schrddinger equation is suppressed; it should be
clear, however, that it is obtained in parallel fashion from the dual version of egs. 3.4 by
differentiation with respect o -r.)

The differential operator of the (dual) Schrdinger equation is defined on the wave functions
as their solutions. The nature of the equation implies that the Schridinger differential operator
maps solutions into other solutions, that is the domain and the range of the operator consists of
wave functions only. This implies that, technically speaking, unlike what is usually the case, the
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integral equations are not more difficult to handle than the differential equations. (The discussion
of how the adjoint equation relates to observation/measurement will be discussed later).

Obviously, these quantum equations (egs. 3.1, 3.2, 3.3) generalize the form of the classical
core eq. (2.3) of the dual system of linear differential eqs. (2.1-2.6) that were used in the adjoint
control approach. However, there are two major differences: the treatment of both the forcing
functions and the boundary conditions will be much simpler in quantum mechasics.

Consider the role of forcing functions. In the classic case x{t) = A(t) x(1) is called a free
system meaning that it is autonomous. The generic form of control eq. (2.1), however, contains
an exwrinsic B(1)u(t) term. By contrast, in the Schridinger equation, there is no extrinsic term, that
is, the extrinsic forcing components are formally not separated. Rather the forcing factors are
automatically absorbed into the H operator.14  Nevertheless, this strategy is not without cost, for

the Hamiltonian operator can take rather complicated forms.!S Regarding the boundary conditions
similar arguments can be made.

3.2 Controllability, Observability, and the Inner Product in Quantum Mechanics

As in classical adjoint systems (Section 2.1), an inner product can also be defined on the space
of the wave functions in the usual way. But here we must take a different route @ interpreting
observability and controllability. The fundamental problem here is that the Hamiltonian cannot be
separated into an informing partand a controlling part. 16 This is the price paid for the simplicity
of adjointniess in quantum mechanics, as compared to classical adjoint systems theory, where
control and information could be separated. In other words, only a weaker form of the Kalman
Duality theorem holds in quanwmm theory. Furthermore, it assumes an implicit rather than an
explicit form. Thus, although the discussion of information and control in the quantum case must
differ from the classical case, the key to the adjoinmess property in both cases is the inner product
concept. For these reasons, we begin our discussion with the inner product operator.

}‘Ina_sawhue:ksysmmbeomocivedasaualmosnsolaume(wnnHouamnmim).andmmkawmk
interacting component (with small i), then the Hamiltonian of this system can be written as a sum of the two
pars H = Ho + Hine . Even from this splitting, it has to be transparent that any external influence which changes
the system, is modelled with a sudden absorption by using an additive interactive compoaent.
lslssasimpleexampleoﬂhisfau.emsiduachzrgedpuﬁdemovinginamagneﬁcﬁdd.
-h._‘lg._l_(h.v —ta) (hvy-

ia zmi ¥ cC )(. ¥ §A)V“W e9
where ¢ is the charge, ¢ is the velocity of light, A is a vector potential, and ¢ is a scalar potential. Even for this
rather simple case, the Hamiltonian is quite complicated; namely,
H =-_L(ILVV—M )(ILVV-M )+ )
16 2m\i < { €

Even if, under swong simplifying assumptions, one could separate the Hamiltonian for a single particle in a
field, for a particle with a complex interior this will not be possible.
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In the classical case the inner product is a bilinear form over two finite dimensional vector
spaces that is formally a finite sum. By contrast, in the Hilbert space of quantum mechanics,
defined over continuous functions, the inner product operator takes an integral form.

Definition: Letfand g be two probability amplimde (wave) functions, then Se(x) *fix) dx is
called the inner product of fand g.

The inner product operator is closely tied to a given quantum mechanical system, that is, to its
Hamiltonian. How can we unpack this inner product operator to reveal observability and
controllability as separate factors? Unpacking the inner product operator will have profound
implications for how one interprets the perceiving-acting cycle as situated in an intentional context
The intentional context will be modelled by the Hamiltonian of the system, while the perceiving
(observability aspect) and the acting (controllability aspect) will be represented by operators with
special properties being required. The tght relationship between perceiving and acting will be
revealed ‘as operators that are self-adjoint, thatis, the same.

Assume that perception involves a meter and that action involves an effector, then this self-
adjointness property implies that such mechanisms are but different aspects of the same operator.
Though the idea is not fully developed here, self-adjointness sugchLs a possible formal
characterization of the construct of a ‘smart perceptual device'—a kind of ecological (inner
product) operator (Runeson, 1977). Here an actor's capacity for acting (an effectivity) and
melering are unified under the intention to discover some characteristic property (an affordance) of
the local environment, as in wielding a visually occluded implement to determine its length and its
suitability for use in some task (Solomon & Turvey, 1988; Turvey, 1989).

In quantum mechanics one does not have to worry about the specific conditons under which
the self-adjointness (hermiticity property) requirements are satisfied. (Primarily, one is concemned
with identifying the Hamiltonian of a system). In quantum mechanics the Hamiltonian is always
Hermitian.

Definition: An operator H is called Hermitian, or complex adjoint if

J Hg)*fdx= [ g *(Hf) dx 3.6)

holds with the property that any fand g converge to zero at infinity.
Replacing f and g with yin eq. (3.6), that is substituting the solution of the Schrodinger
wave equation into fand g, we get

f (Hw)*vdx=f v HHY) dx <N}
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If y satisfies eq. (3.2)!7 then from eq. (3.7) it follows by a substitution

dy = dy d
—Vdx T dx==- = .
J, L 4 + 14 x x dl[vtwdx__o
3.8)

This important result shows that the inner product is time independent for a solution of eq. (3.2).

In the control theoretical framework, the perception-action system was formally modelled by
dual differential equations expressing the observability~controllability conditions. In quantum
mechanics, the control of action is expressed in terms of the Schridinger equation of motion. Its
dual process, the detection of information, is identified in quantum mechanics as measurement.
This is not unusual, for the perceptual system has been treated as a measurement device before
(e.g., Rosen, 1978; Bingham, 1988; Shaw, 1985). What kind of measuring process is perceiving
and how does it relate to controlling? We discuss these issues next.

.An analogy can be constructed berween the influence of a scieatist’s measurement on the
fnouon of an inanimate particle along its trajectory (in the laboratory frame of reference) and the
influence of information detection on the perceptual control of an actor's (self-)motion along its
goalpath (in the Q-cell frame of reference). This analogy holds but with qualification so that
fneasurement of the particle becomes perception by the ‘particle’ and extrinsic control becomes
informed self-control. Therefore, with certain requisite modifications, the mathematics of quantum
medsurement can be extended to the case of a complex particle exercising self-control from the case
of a simple particle subject to extrinsic control.

In classical quantum mechanics, the measurement process is limited to a short period of time.
But for perception (and control) within an intentional context (Q—cell) the process is continuous ‘
between boundgry conditions (intent to target at either the a, @, or Q scale, as shown in Figure 3).
Measurement (and therefore perceptual) information can be represented in the Schrddinger equation
of control. The Hamiltonian for the simple particle can be generalized to include a component
representing the influence of information on the control of motion (Shaw, Kugler, & Kinsella-
Shz.w(. 1991). How might this be done? Information can be conceived as a field, and the goal for
a 'gwen task can be modelled as an attractor in the information field (Kugler, Shaw, Vicente, &
Km:sella-Shaw, 1990). (But see footnote 4 for qualification). As our simple example, consider

again a charged particle moving in a magnetic field. (See footmote 14.) In the formulation for this
proble.m. an external field can influence the form of the control equation without changing the
generic form of the Schradinger equation. Because of their duality, this suggests that the

17 .
In quantum mechanics, unlike the classical adjoint systems approach, time-reversal cannot be modelied simply by

the adjoint system, rather, as 1 215 T () equal to
by . » as proven by goer (1932), correct time-reversal i

W 1932), the transformation sets
its complex canjugace so that T i) = w* (1) rather than setting it 10 the simpler adjoint, m‘) = W'U-
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information field can be modelled within the quantum mechanical framework in a similar fashion.
Using the (dual) Schridinger wave function to characterize the perceiving-acting cycle asa
‘knowledge wave', contrasts sharply with the traditional view of it as negative feedback control

(Smith & Smith, 1987).
To appreciate the modelling strategy for introducing observability (and hence controllability)

into quantum mechanics, consider the nawre of measurerment in quantum mechanics more closely.
Assume a measuring device M measures a property G of a moving particle. Property G is called
an observable. More specifically:

Definition: An observable is a Hermitian quantum mechanical operator G.

Definition: The expectation value, < >, of G in the sate f| is defined by the integral

<G> = [fix) *Gfix)dx = J(GRx))*flx)dx. (3.9)
Definition: A measurement is the expectation value of an observable G.18

Practically speaking, the measuring device must complete the measurement in finite time. One of
the most interesting aspects is that measurement changes the wave function of the ‘otherwise freely
moving particle’ to be measured. Formally, one can show that if the wave function of the
incoming particle is f{x), then the measuring equipment modifies the kernel X of the amplitude

fixy, 1) = [ K(xa, 12 xp, 1) fxa, 1) dx (3.10)

by making it equal to Kexplxa, 12, X1 17 ) in the course of measurement Starting atf = 1;, x = xp,
and ends at ¢ = 1, x = x. The inner product of f and Ky that is fKup(xz, ta, x3; 1) fix1, 1)
dx, gives the amplitude to-arrive at x at the outset of the equipment

fG(xa, 12) =f Kexplxg, 13 x5, 1) flxp 11} dx 3.11)
Using Feynman’s notation (Feynman & Hibbs, 1965), the probability function associated with the
property G will be

PGlxy t2) =1/ Kexp (x2, ta, x 1, 11 ) f(x1, 1) dx B (3.12)

where f{x) is the wave function to be measured, Kexp(x,x) is the kernel for the experimental
apparatus, and x; is the position arrived at by particles with property G . This result, however,
depends on experiment (including the measuring equipment and experimental conditions, such as

18 Since G can be measured it must be real, that is G must be a Hermilian (complex conjugate) operator.
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duration of measurement, etc.). To find the kerne! of another experiment, another form, Kexp:
(x3,x) is needed:

Po(x3.t3.) =V Ko (x3,03, x 1, 11 ) fix 1ty ) dx 2 (3.13)

Since the same property G is measured in each experiment, P(G) should be the same for any
incoming wave function(x) within an unimportant constant phase factor &4, It follows that

Kep (3 1, x 1, 1)) = Kegy (33,83, 31,11) = g(x) (3.14)

so that one obtains an experiment-independent form of the kemel. This independent function,
8(x), is called the characteristic function of the property G. One can now refer to the quantum
mechanical analogue of observability used in classical adjoint control system. Notice that the
integral in eq. (3.13), generally, yields a complex number for the measured amplitde.
Furthermore, if the measurement is expressed as a G transformation on the incoming wave
function f, than eq. (3.13) can be written in the simplified form

P(G)=1[Ax)* GRx)dx 2. (3.15)

The integral will be real if the G operator of the observable is Hermitian. (Compare this result
with the required positive definiteness for M in eq. 2.9). This provides the basis for requiring G to
be Hermitian operator

Knowing the limitation of measurement in quantum mechanics due tothe uncertainty principle,
one should not expect a definition of complete observability, Nevertheless, 2 more general
definition, called maximal observability, can be formulated. This suggests that there may only be
an approximate generalization of the Kalman Duality theorem to quantum mechanics. We are not
yet clear whether there is a mini-max duality between egs. (3.16) and (3.16a) as there is in the
classical adjoint systems case (Section 2.2). This possibility should be ascertained.

Definition: G property is maximally observable in a quantum mechanical measuring system if G
is Hermitian and

P(G) = [fix)* G fix) dx -> max (3.16)

Here G must be a close approximation to the generalized Hamiltonian of the system defined
over the Q-cell. Having the intrinsic adjointness of the quantum mechanical equations and the
equations of a measuring system, the corresponding definitions for controllability may also be
formulated. This can be done by the appropriate variational principle. In quantum mechanics the
variational principle is called the Rayleigh-Ritz method. It states that if H is the Hamiltonian of the
system with E as the lowest energy state value, then for any f the following condition holds:
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Eo < /fix)* Hfix) dx/ [fix)* fix) dx )]

This form is not really helpful for our purpose. The fundamental problem faced is that here
one wants to split the Hamiltonian into an informing and a consrolling part.!® In other words, here
one must pay the price for the simplicity of the quantum mechanics as compared to the classical
approach, where the control and information parts were given in separate equations. Imagine, for
example that we need to provide a field to control the path of a particle. Then the controliability can
be defined on the basis of the Hamiltonian, which includes the ‘control field'. Unfortunately, the
measurement (observation) will change the Hamiltonian of the system. Consequently, it is not
possible to isolate the control part of the new Hamiltonian, There is a kind of tautological limit on
what one can do to separate control from information in the quantum case. One can take a control
perspective or an information perspective on the actor's generalized Hamiltonian but there is but
one quantity. Hence these control and information seem quite tautological. To get around the
tautological nature of the control versus the measurement problem, it seems to us that one can do
no better that to consult Feynman & Hibbs' (1965) discussion of the issue. In their discussion,
this tautological nature of information and control is simply a strange property of the
characteristic function.

They initiate the discussion with the following question: What is the relationship between fand
£? Before answering this question, one must ask: What should the srate funcrion f be to have the
property G? To find a particular state function, F, for a given experimental apparatus i with a
given characteristic function g , one has to solve

[ Kexp (%, x) F(x) dx = &x;- ). (3.18)

This equation has the well-known solution x* exp (x1.x) for F(x). Here K"ap (xi,x) is the
complex conjugate of Keyp (x;x). Consequently,

F(x) = K*exp (x3x) = g(x). (3.19)

That is, g(x) gives us the wave function of a particle having the property G with probability 1.
Furthermore, if the particle is in state f{x) the amplitude that it can be found in a state g(x) is

WG) =[g(x) *fix)dx = ®lg(x) ] (3.20)

19 Here one might expect the duality property (under a Greeas function) of the time-forward Feynman propagator
and the time-backward Dyson propagator, might be uscful ways to represent controlling and informing, respectively.
Unfortunately, the problem is more complex than this, for onc must bave coupling of information and control over
internal and external frames of reference. Recall the quote in Section 1 from Shaw & Kinsella-Shaw (1988). These
issues, bowever, bave been touched upon algebraically (but not explored analytically) in Shaw, Kugler, & Kinsella-
Shaw (1991).
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Having outlined the major point of Feynman & Hibbs’ discussion (1965, pp. 96-108), they

conclude:
"We might say loosely: The probability that the particle is in the state g(x) is lg(x) f{x)dx 2.
This is all right if we know what we mean. The system is in the state f{x), so itiis not in
g(x); but if a measurement is made to ask if it is also in g(x), the answer will be affirmative
with probability i
P(G)=I[g¥x) fix) dx12=plg(x)] (3.21)

A measurement which asks: Is the state g(x)? will always have the answer yes if the
function actually is g(x). For all other wave functions, repetition of experiment will resultin
yes some fraction P (between O and 1) of the tries. This is a central result for the
probabilistic interpretation of the theory of quantumn mechanics.

For all this we deduce an interesting inverse relationship between a wave function and
its complex conjugate. In accordance with the interpretation . . . fsee eq. 3.20], g*(x) is
the amplitude that if a system is in position x, then it has the property G. [Such a statement
is put mathematically by substituting a § function for f{x) [see eq. 3.20). On the other hand,
g(x) is the amplitude that if the system has the property G, it is in position x. (This is justa
way of giving the definition of a wave function.) One function gives the amplitude for: If
B, then A. The other function gives the amplitude for: If A, then B. The inversion is
accomplished simply by taking the complex conjugate. Equation [3.21] can be interpreted
as follows: The amplitude that a system has the property G is (1) the amplitude f{x) that it is
at x times (2) the amplitude g *(x) that if it is at x, it has property G, with this product
summed over the alternatives x.” (Feynman & Hibbs, 1965; pp. 108-109. Numbering on
equations refer 1o equations in the current paper.)

The gist of this section can be interpreted as the quantum version of what Gibson called a rule
for the perceptual control of action (1979). For the measuring process (detection of goal-specific
information) to be successful (in controlling action), the g characteristic function (affordance goal
property) of the environment has to be a complex conjugate of the state function f (the effectivity
property) of the actor. The measurement procedure specifies a characteristic function (goal-specific
information) which will be a real extrinsic constraint. For the measuring process to be successful,
the free particle should modify its state function as a result of measurement. More specifically, in
order to have a good measurement (high probability) the self-adjointness (or complex conjugacy)
of the characteristic function and the state function of the moving particle should be properly set
up. The calibration includes the boundary conditions (the Q-cell) within which the device executes
its measurement.
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In the quantum mechanical example of 2 moving charged particle in the magnetic field, the
focus was on the measurement problem. Actually, both the action of the particle and the measuring
process are equally important, even though the role of action is essentially implicit in the
discussion. (This is in keeping with Gibson’s being a perceptual psychologist who was at heart an
action psychologist.) This is the natural consequence of the fact that the particle is nét an
intentional system which can set its own goal parameters. In the case of a living organism the
focus should be on the goal-directed action which is guided by perception. That is, the focus
should be on the intentionally selected goal specific action guided by perception.

For an organism moving toward an intended goal, and perceiving (measuring) its state relative
1o the goal (which is given by the characteristic function), the task is to move so as to maintain its
self-adjointness. This self-adjointness is achieved by the actor observing a rule for the perceptual
control of action; namely, in the language of quantum theory: 'Move so that the wave function of
motion is the complex conjugate of the characteristic function given by the perceptual
measurement!’; and, in the language of intentional dynamics: "Move 50 as to perceive what you
need to perceive if you want to satisfy your intention of maintaining your goal (that is, completing
your intentional task)!" (See Section 3.5 for further discussion).

In the above discussion, intentional dynamics assumes that the property G is an approximation
of the generalized Hamiltonian that must be defined over the whole Q-cell. This compact
theoretical formulation may be both too brief and too ambitious. For it requires perfect knowledge
of all the observables with regard to the given Hamiltonian—something usually not known
explicitly. Nevertheless, it scems clear that a quantum theoretical framework for intentional
dynamics may be in the offing. Final judgment should be suspended until empirical examples have
been thoroughly worked out. (Note: There are other observables defined with respect to the Q-cell
of intentional dynamics, and additional conditions from quantum mechanics to be satisfied. These
are discussed in the Appendix B).

To complete the parallel presentation of the quantum approach to the classical case (Section 2),
the integral equations of quantum mechanics formulated by Feynman must be introduced. We do
so in the next section.

3.4 Feynman Path Integral Approach

The equivalence of the Feynman path integral formulation and the conventional presentation
of quantum mechanics by the Schrodinger differential equations is discussed in several books.
The translation between the two languages can easily be found in the literature. For instance, the
detailed analysis of the transition from the path integral to the Schrodinger differential equation can
be found in Feynman's book (Feynman & Hibbs, 1965). The most common way to do the
translation is to differentiate the equation of the path integral so as to derive the Schridinger
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equations. Obviously, the derivation is invertible. The inverse direction of translation can also be
done by simply reversing the derivation steps. However, here we present the translation from the
differential approach to the path integral approach for two reasons:

First, because certain important aspects of the path integral formulation help us understand
more about the usefulness of the quantum mechanical technique in intentional dynamics. Second,
because it is important to show the role of Green's function and its generalization for the quantum
mechanics. Pardy, because the self-adjoint formulation in control theoretical framework (Shaw,
Kadar, Sim, & Repperger, 1992) naturally offered the Green's function as a candidate to
understand formally, and perhaps also empirically/physically the underying deeper processes.

Following the same steps of the above construction of integral equations as inverse ones to the
differential equations, the derivation begins with writing the Schridinger equation. Next, one
must find the corresponding Green's function that will be the kernel of the integral equation
associated with the Schridinger equation. Finally, it must be shown how one can obtain the
Feynman path integral formulation from the Greens function.

For the Schriddinger equation, the generic form of the associated integral equation will be

Wixy, t2) =[Ki(xy tz; x1, 1) Wixl, 1) dx 3.22)

This equation provides the standard way to show the equivalence of the differential and the path
integral approaches. By simple differentiation in time, it yields the Schrédinger equation. (Again,
to keep the presentation simple, we suppress the dual version of these equations). 20

We need to point out that the differential operator of the Schrdinger equation is defined on the
wave functions as their solutions. As mentioned eariier, the Schrodinger differential domain of the
operator the domain and range of the operator consists only of wave functions. Consequently, the
inverse operator can be written in the form eq. (3.22) with the boundary condition

K(xp, t2,: x5, 11)) =0 forty; <. 3.23)

The Green's function of the Schréidinger equation will be the kernel of the integral eq. (3.22) as it
can easily be seen by comparing eq. (2.21) with eq. (3.22). The Green's function represents a
local (infinitesimal) influence resulting in displacement. The kemel K(xy, 127 x;, 1;) of the
Schrédinger equation can be given explicidy as

20 The original, time forward equation is given by eq. 3.31. The dual equation then is w(xz. #1) =/K(x}, 11.: %2,
12) W(x2, 12} dx. The dual kernel © eq. 3.33 (antipropagator) is

Klxz, 2; x1, ty)= | el@h)S0ra. 21 51. 01 D x{#) As a short hand for both the original and the dual equations,

one might replace the usual path distribution functional, Dx(r) with Dx/¢] meaning that the distribution is
temporally bi-directional, i. ¢., is both Dx(+1) or Dx(-t}.
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K{xa, t3; x4, 1) = j eli@kstr. 12 1. 1] D) (3.24)

Eq. (3.24) is Feynman's path integral representing integration over all the possible paths
between (x3, t2,) and (x}, 1; ). (Again, consult footnote 19). The kemel is also called the
amplitude with respect 1o its endpoints. Figure S illustrates the way in which a classical (stationary
action) path can be obtained from the distribution, Dx{1], by constructive and destructive wave
interference. Traditionally, the divisor in the exponential term, @ = A. This shows that the width
of the uncertainty region around the classical path has the width of Planck’s constant, h. For
generality, however, {explained below), this constant is replaced with a variable a1 Since this is
key to understanding the origins of the knowledge wave', let's consider this process in more
detail.

(Insert Figure 5: Emergence of the ‘Knowledge Wave’ within the £2-cell)

We ask: How does a particle (or an actor) get from an initial point (intent) to a final (targer)
point? In the classical approach, although the principle of least action picks out the path, it is not
clear how the particle is constrained to that path. Also, in conventional formulations of quantum
mechanics, no definite path is possible because of uncertainty. Hence the path concept is deemed
uscless. Feynman's insight was to appreciate the positive import of this problem; namely, if a
unique path is not possible, then all possible paths are allowed! Furthermore, he showed how the
classical path could be recaptured: Weight each path by the factor e including the classical path.
Feynman then showed that each path is more or less in dynamical phase with the other possible
paths. Thus they each contribute to the sum of amplitudes which is greatest in the vicinity where
the classical path is to be found by variational techniques. More particularly, the classical path is
distinguished by making the action, S, stationary under small changes of path: thus close to this
path the amplitudes tend to add up constructively, while far from it their phase factors tend 10
cancel because of destructive wave interference. The path integral approach essentially gives a
‘global’ formulation to classical field theory, and for our purposes, to intentional dynamics.

To enrich the intuition on the meaning of the path integral, consider how it may be extended to
a concatenation of path distributions (e.g., a sequence of w-cells):

Amplitudes for events occurring in succession can be expressed in the form

K(xy, 12,5 x;, 11) = [ K(x2, 12,5 X0 tc) K(xg, 105 X, 1) dxe (3.29)

where the integration means summing over all x t points, that is the total amplitude to go from
(x5, 1;) o (xg, ;) is the sum of the product K(x;, 13,7 Xe to) K(x¢, to; X1, 1;) taken for all
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possible (x, tc) The concatenated Q-cell partitions, shown Figures 2 and 3, provide cases where
the ‘chain’ rule of kernel products applies. Itis important to recognize that fhe Feynman path
integral is defined from initial (or final) point to a moving current point, wlu'cfn acts as‘a par.ameu:r
that distributes action (§) over the paths moment to moment. Thus, the partitions dq')lcted m
Figures 2 and 3 arise dynamically as a function of the perceiving-acting cycle branchutg at different
choice-points while leaving the overall intention (Q-cell) invariant (For example, consider a
predator who must change directon in order to continue tracking a dodging prey.).

(Insert: Figure 6: Showing the Range of Scales for the Weighting Function in the Feynman Path
Integral))

In the weighting function, exp (iS/@) {eq. 3.24), over the Feynman distribuu'orf. Dx(t), or
Daf-1), the scale used in physics is @ = h (Planck’s constant). This weighting t‘u.ncuon ct'm be
generalized to ecophysics and applied to intentional dynamics. By replacing h witha va??ble
scaling factor corresponding to @or @, where h < a < @ < €2, one can have grade‘d pamuc{ns of
uncertainty (tolerance) around the classical stationary path. The existence of .a variable scaling
factor expresses mathematically Kugler & Turvey's (1987) claim the that actixc.)n system can be
variably quantized. Also, the total action (5) associated with these path partitions can be expressed
as a product of kernels of the Feynman path integral as defined by eq. (3.25).

3.5 The Analogy Between Ecological Laws and Quantum Mechanical Law§ . ‘

Classical mechanical laws apply to predict events: Given the appropriate initial conditions (i.e.,
the mass and layout of three balls A, B, and C) so that if event; occurs {e.g., ball A suikes ball‘B),
then event (i.e., ball B strikes ball C) necessarily (lawfully) follows. Traditionally, psy.cl?ologx.ca.l
laws have been assumed to take the same causal form: Given the appropriate initial oondx.uons (e,
normal organism with proper learning history, anending (o stimulus, and so forth), then if event;
occurs (a stimulus event), then event; (a certain response) probably (lawfully) follows . Here, as
Skinner (1977) suggests, the stimulus, although not truly a force, acts like a force, an'd th(.: cor‘m'ol
law’ (next state function), although not tnﬂy alaw, acts like a law to move the organism into its .
next state from which it emits the observed behavior. If the state transition is associative, then this
form of law fits a stimulus-response behaviorism; however, if the state transition involves a
representation, or symbol, then this form of law fits cognitive psychology (Fodor & lTylyshyn.
1988). This classical law form, however, fits neither quantum phenomena nor ecolagical
psychology phenomena (e.g., intentional dynamics); rather, they both take a dit.’fe:em law form.

It is generally agreed that quantum mechanical laws do not predict eveats with absolute -
ceruinty, as deterministic classical laws are supposed to; rather they predict only thc probability
that subsequent observations (measurements) will follow from previous observations
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(measurements) if, as discussed earlier, a cerntain self-adjoint (complex conjugate) relationship
holds between a state function and characteristic properties of the situation (Wigner, 1970). As
indicated, ecological psychology require laws that operate similarly.

Consider a rule for the perceptual control of action (Gibson, 1979), say, as formulated from
the perspective of a prey engaged in a prey-predator competition. 'If you (the prey) intend to
escape the predator, whose image is expanding in your optic array, then intend to move so as to
make the predator's image contract!" Here, analogous to the quantum law formulation, the law
relates a previous observation (information) to a subsequent observation. The quantum mechanical
interpretation of intentional dynamics gives the following generic reformulation of a rule for action:
"If you (the actor) intend following one of the acceptable goalpaths (i.e.. in a congenial Q-cel}
distribution) having intended characteristic property 8’ (positive affordance value), then stop
applying the old state function, f (an inappropriate effectivity), which generates unacceptable paths
{Le., in a uncongenial Q-cell distribution) having the unintended characteristic property, g

(negative affordance value), and begin applying a new state function, f* ‘(an appropriate
effectivity)!’

(insert Table HI: A Comparison of Law Forms)

Table I1 compares the different laws discussed. Both forms of the classical law form (I and
10) relate event to event, while the quantum-type law form (ITI and V) relate information to
information through a function that is the complex conjugate of the characteristic property of that
information. In the quantum case, a state function does so, while in the intentional dynamics case,
a path function (an effectivity) does so.

4.0 Conclusion

In the adjoint information/control theory (Shaw, Kadar, Sim, & Repperger, 1992), perception
was formally construed as observability and the action as controllability (Kalman, Englar, & Bucy,
1962). This traditional law approach treats control systems as an analytic extension of classical
mechanics, formulated in terms of ordinary differential equations, or, altemnatively, as an extension
of variational mechanics, formulated in terms of functional (Volterra) integrals. It was argued that
although these mathematics are quite appropriate, up o a point, they have certain inherent
limitations for modelling perceiving-acting systems which exhibit intentional dynamics (e.g.,
prospective control). The self-adjointness property is a merit of this traditional approach, but alone
itis not sufficient. Rather the classical variational approach to defining the goalpath of the
perceiving-acting cycle has inherent shortcomings because of the mathematical physics it inherits
from classical mechanics. These three shortcomings are most prominent:

(1) it does not give an account for how a ‘particle’ selects a stationary path;
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(2) it does not provide a principled way 10 handle the tolerance limits on detection and control ;
in following a path; and
(3) it provides no way to embed the perceiving-acting cycle in an intentional context.
Self-adjointmess is a natural property of Hilbert space and so is inherited by quantum
mechanics. Hence, it was argued that the perceiving and acting in intentional contexts might have a
natural description in quantum mechanics so that these three shortcomings are overcome.
To the above complaints we gave the following remedies:
(1)* The Feynman path integral provides a physical motivation for the claim that the path thata
‘particle’ elects necessarily emerges very close 10 the classical (stationary action) path. |
Figure 5 shows that the quantum action distribution is constant to the first order in th.c
vicinity of the classical path (dark strip given by constructive wave interference), while
outside this region the dynamical phase oscillates so erratically that the corresponding
amplitudes of the other possible paths are washed out (by destructive wave int.crft’.l!:l?ce).2l
(2)* The tolerance limits around the path represents the fallibility of control of informan.on
detection by intentional "particles’ and Planck’s constant range of Heisenberg uncertainty ‘
around the path of inanimate particles (Figure 5). The tolerance range for ‘particles’ ‘
exhibiting intentional dynamics is variable, depending on the nature of the task, the degree of
certainty of the intention held, scale of information and control resolution, and the number of
interpolated choice-points. Regardless of these details, however, the weighting functioi: in
the kernel, ei/@ (where o ranges from k to £2) which propagates the path, unites intentional
dynamics with quanwum physics vis a vis the Feynman path integral and provides access to
the Schidinger wave function—the knowledge wave' in the case of particles exhibiting |
intentional dynamics. An important goal of ecological physics has been to provide a ‘
continuous link betwéen psychology and physics (Shaw & Kinsella-Shaw, 1988). This link
is now forged by this variable weighting factor, , for it shows how psychology, through !
intentional dynamics, can be continuous with physics when a constant scale factor is allowed
to become a variable one.
(3)* The perceiving-acting cycle becomes situated in an intentional context when it is embedded
in an Q-cell. Here not only is generalized action conserved under successful goal-directed
behaviors but intention acts as a kind of implicit 'steering function’ (prospective control) so

2 ynman mhmdknummﬂybemusemeua;ecmfuﬁnmmcdmmlmeanry
h’“T:: :mplcx :;ﬂ;iwm rapidly (i.¢., they bave a negative definite meuic). To allow for numerical
'mxmﬂons.abndgc&m s 10 stati i anbebud(bymmgu:ned;mman
imaginary d by the op o (a Wick ioa) f—>iT. Th:slmstbeeﬂ’eaofdmnpemngthc y
osciltating exponential, £5/®, and turning it into an exponentially decreasing function, &%, which bebaves more
like classical weighting functioas (L., with a positive definite metric). Multplying through by -if acts

holomorphicaily to counter-rotate the solutions to this path integral back onto the original metric (Aitchison & Hey,
1989).
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that the actor (who is well-intentioned) can ride the crest of a dual (information and control)
knowledge wave'. The symmetric kernel of the dual Feynman path integral, as defined over
Dx[t], is called a propagator because it generates all the knowledge (remembered history and
anticipated future) that may exist for a ‘particle’ (actor). Consequently, it is the core equation
for intentional dynamics as it is for quantum physics and provides the attractor dynamics
needed to explain goal-directed behavior.

Perhaps, the chief failure of classical physics, and inherited by the classical adjoint control
theory is to make room for goalpaths that are possible but not pursued. In the classical approach,
the only path which exists is the path actually followed by a particle, in accordance with the ™~
principle of least action. For intentional systems, where choice behavior must be real, paths
intended but not followed must be as real as paths that nature defines by least action. This
requirement of intentional dynamics, like that of quanturmn mechanics, calls for a dramatic change in
scientific philosophy.

Like quantum mechanics, intentional dynamics, needs a physics of possibilism and not just of
actualism (Turvey, 1992), Foxiuitously. where classical physics does not allow for such
possibilism to underwrite choice behavior, the newer view of quantum physics based on the
Feynman path integral does. The implications for the philosophy of psychology are immense.
Under the classical approach 10 perceiving and acting in intentional contexts, one had 10 posit
nonobservable constructs, such as unconscious inference, magically acquired memories or
cognitive maps, and so forth, 10 underwrite the choice set from which actual choice-behaviors
emerge.

By contrast, from an ecologized version of the Feynman path integral, a field of information
and control, is shown to emerge. By differentiating this integral, a Schrédinger-like ‘knowledge
wave' arises to illuminate the actor’s goalpath choices—a goalpath distribution whose width is
automatically scaled to the abilities of the actor by an intrinsic weighting function. If so, then the
intentional control of the focus of attention, by which the actor finds its way, is explained.

In summary, our aim in this paper was to show that measurement in quantum mechanics could
be extended to the Q-cell 1o model the perceiving-acting cycle in an intentional context and to show
that the existence of the so-called knowledge wave' is by no means fanciful We have provided
arguments in favor of both of these claims. How does this approach relate o other attempts to use
quantum mechanics in psychology?

If, as we suspect, the intemal mechanisms for perception, action, and cognition (e.g.,
intentional focusing of atention) under the auspices of this approach are to be replaced by
ecological operators on a quantum-like field theory, one must wonder if any help from
neurodynamics for such mechanisms is in the offing. Apparently so.
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It is worth noting in this regard that variations on quantum mechanics have been used to
model figural processing (Pribram, 1991), as well as audition (Gabor, 1946), at two distinct
constituent scales in the analysis of brain processes: the macroscale of information processing in
the brain and at the nanobiological scaleof the microtubular processes of the cortex (Hammeroff,
1987). At the more macro scale, the neurodynamics that support visual and auditory perception
have been framed in terms borrowed from quantum microphysics. More specifically, the activity
at the level of the dendritic microprocesses has been modelled as a quantum field, where Pribram
has hypothesized quantum or patch holographical processes to occur and 'signals’ are *. . . better
conceived of as Gabor-like elementary functions—-quanta rather than bits of information"
(Pribram, 1991, p.271). Where the above approach represents an extrapolation from quantum
microphysics to neurodynamics, our efforts represent an attempt to develop a quantum
macrophysics appropriate to intentional dynamics at the ecological scale. Where brains provide
the boundary conditions for the former approach, the Q- cell does for the latter (see Shaw,
Kinsefla-Shaw, & Kadar, in preparation).

We have surveyed the promise of the quantum mechanical approach to modelling the
perceiving-acting cycle in an intentional context and found many ways that these mathematics
might be appropriate. We have also discovered problems that must be overcome if the complex
nature of the interaction of information and control is to be understood. Obviously, much further
work is required.
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Appendix A: Coustructing Green's Functions

There are several difficulties in constructing a Greens function for a given differential
equation. First of all, the inverse does not necessarily exist. This shoricoming can be redeemed in
many cases by some transformation. Even if the inverse exists, its construction is usually more
difficult than finding solutions by using a properly chosen conventional trick. However, if the
inverse exists, then the problem is equivalent to the task of finding or constructing the kernel, the
Green's function of the integral equation (See e.g. G(x, 1) in eq. [2.14]). There is more than one
way to construct the Green's function associated with a differential equation. Each method may
have corresponding physical meaning. Here we presented the one which is the easiest and the
most revealing in terms of using the adjointmess we have already introduced in our paper. Here we
just further refine the basic concepts.

Definition: L* differential operator is formally adjoint to L if L and L* are associated with the
following equation

Jx) Lg(x) dx = [...] + [fix) L* g(x) dx (A1)
Definition: L is formally self-adjointif L = L*.

Definition: L* differential operator is adjoint w L if the associated differential equationsof L has
homogeneous boundary conditions, that if the eq. (A.1) takes the simple form

Ir4x) Lg(x) dx = [fix) L* g(x) dx. (A.2)
or using the inner-product notation
(. &)= Jfix) *g(x)dx (A3)
€q. (A.2) takes the form ‘
(Lfg) = (f, L*g). (A4)

The key step to achieve the adjointness is to recoghize the importance of elimination of the
boundary terms in eq. (A.1). The very same idea leads us to the Green's function (Greenberg,
1971; pp. 22-26). If we find a G function for a given g, for which

LYG) = &x"-x) (A5)
Gla,x) = G(x', b) =0 (A.6)
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where & is the Dirac delia function, then the solution of the equation L{y)=g(x) can be written in the

form
wx) = [G(x' x) *g(x')dx’ (A7)

To illustrate the méaning of this seemingly pure formal trick we can imagine an arbitrary physical
problem associated with a differential equation, e.g. eq. (2.12), where g(x} is a forcing term ch
the otherwise autonomous system, represented by the homogeneous L{y ]= 0 equation. We can
realize that

G(x',x) *g(x')dx' (A8)
represents a local concentrated influence of the forcing term. Consequently, the right hand side,
the integral part, of eg. (2.21) represents the superposition of the localized/quantized influences.
That is why the Green's function is ofien called the influence function.

Appendix B: Minimal Requirements for Quantum Mechanical Observables

Having now provided a generic quantum theoretical framework, two questions naturally
emerge:

a) How can an observable be conserved (i.e., be a dynamical invariant)?

b) How can a conserved quantity be found?

To provide the fundamental ideas for answering the first question, a simplifying assumption is
needed. Assume a time independent Hamiltonian AH. Let F be an observabie in the state y. Ifits
value, <F> conserved, that is constant, then its time derivative

- i Ay
g(p)_%j w‘Fu/dx_I v Fl//dx+j vl o ®.1)

should be equal to zero. Using the complex conjugate Schrisdinger equation

-ihédv%‘-‘—.(ﬂlp)"\= yv*H.

(8.2)

eq. (A.1) takes the form

% 8= tj w{HF-FH)ydx.
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The integral is vanishing if and only if the commutator of H and F, HF-FH = [H, F, is vanishing,
M that is

[gF-FH}=0— 4ip) =0. (B.4)

The vanishing of the commutator was trivially true for the case when for the observable operator F
was the complex conjugate of the Hamiltonian, F = H*, The vanishing of the commutator

obviously provides us a less strict requirement for the observable, but it still requires the full
knowledge of H.

Regarding the second question concemning the discovery of conserved quantities, one can
further weaken the required conditions as follows:

The solution for the second issue is implicit in the first problem. Namely, if we have an
operator U/ which commutes with H and is invertible, then

HU-UH =0 ->HU=UH ->H = UHU. (B.5)

If Uis ime independent then eq. (B.5) shows that U is a symmetry operator of the Schrddinger
equation.

Definition: U is a symmetry operation of a differential operator L if for any w solution of L Uy is
also a solution of L.

For the Schrdinger equation if U is a symmetry operator and is a solution then

., dU
i % = HUy. (B.6)
For U is not time dependent,
dy
k= = UHUY, B.7)

There is, however, an additional physical requirement for the U transformation. In our conceptual
framework this means that the inner product invariance postulate is an intrinsic requirement for
quantum mechanics. The U transformation is admissible if the normalization of the wave function
is not changing with the application of U, that is if

22
If H and G compfute then we can choose the eigenfunctions that they will be common eigenfunctions of H and G
Hy=Ey
Fy=fy.
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It follows that U'U = UU' = . . meaning U has 10 be a unitary transformation. Clearly, the ¢ = speed of light
unitary transformations and also the antiunitary (see the time reversal transformation below) ° =Sp

transformation play important role in our theoretical analysis due to the inner product invariance
postulate 23

A Minkowski Light Cone

Figure 1: A Minkowski Light Cone. An unbounded worldline passes through an origin.

Imagine all possible worldlines converging on the origin from the past that might be occupied
: by an actor. These are all the events that the actor might have perceived as well as all the past
E " events that might have causally affected him. Also, imagine all the worldlines diverging from
the odigin toward the future. These are all the possible events that may originate from the
actor—actions or information—to affect future events.

23 The complex rotation U= eieF provides us an interesting connection between the cerwin unitary and Hermitian
transformations. The operator F is called the generator of U and it is the observable connected to U if U is not
H.enn.man. H. Weyl (The theory of groups and quantum mechanics, Dove, New York, 1950, pp. 100,214) considered
this kind of rotation transformations while investigating the electric charge < >, as a conserved quantity. This type
of transformations are called gange-transformation of the first kind. Gavge invariance, in quantum mechanics, means
11at the gauge transformation of a solution would be another solution of the Schroding
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Y Q-cell with ®-cell and o-cell gmonﬂar.&x;n;ua.sm

Partitions

Note: The goalpath corresponds to a point on an
object rotating through one 720° Q-period, or
two 360°w-periods, or four 180° o.-periods.

Figure 2: An £2-cell Geomerry for a Goal-directed Action. Here we see that the worldline segment
representing a goalpath is bounded by the point of intent and the target point. In between these
endpoints are other points, called choice-points, at which sub-goals for subordinate actions are |

i : ) P Figure 3: A Schematic §-cell Showing its Nested Partitions.
determined. The four ballistic half-tumns of the tumitable are represented as the points parsing i
the sinusoidal curve generated over space-time by the rotation event (The accelerations and :
. cted +t repellorg-=ammeenve-o-- opoe e e .-----~ -t repellor
decelerations are not depicted). : controllability observability ¢
; {\ (control) (information)/:
' 1, :
E N 5
| 1ntent: - Ltarget
point; inner product invariant ~ Vpoint
“t ATACLOT ‘g s TTT T o m e - e oo e ; +t attractor

Schematic Representation of Temporal Self-adjointness of
Information and Control over Goalpath
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Figure 4: Temporal Self-adjointness of the Information and Control. The dual paths denote the
complementary conjugate values of information and control at each point along a goalpath
traversed by a perceiving-acting system. There exists an inner-product invariant so that the
generalized acrion quantity (defined as the inverse flow of information and control) is
conserved. As one quantity increases, the other decreases, so that the bi-temporal
integrals always sum to yield the same total amount of generalized action over a given goalpath.
If the path is not a goalpath, then this quantity will not be conserved.

Organism Perspective Environment Perspective
(Action) (Perception)
Energy (control)(+t)

y(t)=kX(t)+f Ko(t,s)x(s)ds X(t)=ky(t)+f Ke(ts)y(s)ds
[+] ]

Equation [ Equation I

Information (detection)(-t)
x*(t) = k y*(t) +f Ko (s, t) y*(s)ds  y*(t) = k x*(t) +f Kg (s, t) x*(s) ds

o

Equation III Equation IV

Table I: The Integral Equations Representing the Perceiving-acting cycle. This system of adjoint i

equations are the solutions to the differential equations discussed in Section 2 (See Shaw & Alley,
1985, for discussion).

A //// 1) @ = CLABSICAL PATI
= Y 7y = = QUARITUM PATH ‘
% T = wave posciion (5e) OF ACTICN

——-2 5z +AE (peEeTirBation)
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" y(©
ction
Eqe.D | K | <« XO_ "

1. energy (control) duals

Y*(t)
Action K* <*\
(Eq. 1l | Ky X0

2. information (observation) duals

Table I: The Adjoint Operators Representation of the Perceiving

correspondence to Table 1.

Figure 5: Emergence of the ‘Knowledge Wave* within the Q-cell. INSERT HERE).

K,

K

o

-acting Cycle. Note the

(5
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Perception KIND OF LAW FORMULATION
(Eq II) L Classical mechanics eveny;—(mechanical law)}—>event;
IL Classical psychology e stimulus—(association law)—>response

TII. Quantum mechanics
IV. Intentional dynamics

Perception

(Eq. IV)

observation,—(QM law)—>observation,

goal-info.—(effectivity }—>goalpath info.

Table ITI: A Comparison of Law Forms
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