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1.0 Introduction: The Goalpath Navigation Problem 

For ecological psychology it has been suggested that the perceiving-acting cycle should be the 

smallest unit of analysis. We would like to amend this suggestion. I t  now seems to us that the 

smallest unit of analysis must be the perceiving-acting cycle situated in an intentional context. 

What this means is the main topic of this paper. 

To situate the perceiving-acting cycle under intentional constraints is to identify a space-time 

context in which the actor selects a goal I .  and then selects from all causally possible paths those 

that are potential goalpaths, and from these the actual goalpath to follow. The generic problem, 

therefore, is how best to describe the action of an organism. A successful action (henceforth 

defined as a goal-directed behavior) minimally entails selecting a (distal) target and moving over a 
space-time path in an intended manner to thai target. This implies that the distal target and the 

future goal-stale of the actor must make their presence felt in the information and control 

accompanying its current state. Thus somehow the distal must logically condition the proximal. so 
that the actor's changing relationship to the intended final condition acts to re-initialize (update) the 
actor's current condition. This is what it means for a space-time path to be a goalpath. 

A careful consideration of these requirements suggests that a fieldof wntrol-specific 

information must exist in which the actor and the intended goal both participate. Furthermore, this 
field of control-specific information must at the same time and in the same place be a fieldofgoal- 

relevant control. Hence each space-time locale in the field is characterized by both an information 

value and a control value. Such values that go together in this dual fashion are said to be conjugate 

information-control values. The relationship between the energy controlled and the information 

Also of Haskins Laboratories. New Haven. CT 
We cd^ goal@ bKrwIcdgs m comprise both urge1 information and manner dctcrnunanonÃ‘tha 

. . 
is. spedfleadal 

of where (be lanei is located in since-& and deienniaaiioa of the best manner of zwmacbhg i~ (See Shaw & 



Shaw. Kadar. & KinxUa-Shaw 
Intentional Dynamics 

detected with respect to the goal is said to be adjoins by natu-something all creatures are born 

into because of evolutionary design. When this adjoint relationship, however, leads to successful 

goal-directed behavior (something that often has to be learned), then the adjoint relation of 

information to control is said to have become self-adjoint. 2 

One recognizes in this problem of goal-directedness the need for what the WGmburger 
('imageless thought")hchl of psychology called a 'determining or organizing tendency' 

(Eitellung). We call this Einslellung, when augmented with a boundary condition, an intention 

because it is the goal-sensitive, agentive function (a cognitive operator, if you will) which 

determines goal-selection and organizes the dynamics under a 'control law' designed to serve the 
intention 3 

The existence of such a field of conjugate values, in which information and control might 

become self-adjoint, would explain how everywhere that the animal might venture there are 
opportunities for acting toward the goal in an intended manner (excluding. of course, those places 
and times where the target is occluded or barriers block its accessibility). We shallshow thai such 
an information-con~~ol field has a rwtural interpretasion in an adjoint infonn&n~cofitroI theorenc 

formulation of quantum mechanics. 

As a step toward this field theoretic model, we postulate an intentionalprocess which acts (as 
an Eiitellung) to set up a perceiving-acting cycle (along the lines discussed by Kugler & Turvey, 

1987, and Shaw & Kinsella-Shaw, 1988). The actions that the perceiving-acting cycle might 

generare over space-time define the causally possible family of goalpaths. Here intention, defined 

as a cognitive operator, tunes the perceiving-acting cycle by directing both the attention and the 

behavior of the actor toward the goal. A coherent account of this intentiondriven dynamics would 

remove the mystery of how actors maintain informational contact with their goalpatlu; namely, 

they do so by direct perception when the goal is detectable, o r  otherwise, when not detectable (say, 
over the horizon), they must navigate either by indirect perception or by direct perception plus dead 

reckoning. For humans, indirect perception may be achieved, as Gibson (1979) suggests, by 

means of verbal instructions, or by use of a map (with target coordinates specified), perhaps. 

drawn or remembered. As nautical navigators discovered, however, a map alone isnot adequate; 

one also needs a compass to detmnine directions at choice-points, and a chronometer to satisfy a 

schedule of departure and arrival times if contact with the goalpath course is to be maintained. 

In this paper we will discuss die role of adjointness and self-adjoinmess la perceiving and acting in an intentional 
context. W e  will not discuss, however, the nonlinear learning or Â¥insight pnxxss by which adjoinmess becomes 
self-adjoinmess. Thai wiU have to await {ultiia developments of ibe thdxy of lateniioaal dynamics. But sec Shaw 
& Alley. 1977, and Shaw, Kadar. Sim, & Rcppcrga. 1992, for initial thoughts on laming. ' By relating inleolional dynamics to this central concept of (be Wttnzburgcr school d act psychology, we 
underscore Gibson's (1979) acknowledgment (hat ecological psychology has a dose historical lie to this school 
because both oppose the ctemcntarim of the structuralists and emphasize process. 
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Hence the approach proposed in this paper can be summarized as a fieldof conjugate 

information-control values, with paths being generated by a perceiving-acting cycle which is 

motivated and guided by &tention as a fieldprocess. This account contrasts sharply with more 

traditional accounts- Let's consider the contrast- 
Since animals presumably do not use navigation tools, then they (like humans without benefit 

of maps, compass, and clocks) must rely on direct perception plus dead reckoning to perform the 
same navigation functions. Traditional psychology assumes, not unreasonably, that under such 

circumstances they direct themselves by 'cognitive maps' (where intended goals are somehow 

attentionally distinguished from non-goals). The evidence for the existence of cognitive maps, one 

might argue, is the actor exhibiting a 'sense of direction' at choice-points, and a 'sense of timing' 

which keeps the actor on schedule in arriving at  and departing from sub-goals. Here the cognitive 

modelling strategy proceeds by positing internal mechanisms that internalize the map, compass, 

and chronometer functions. Regardless of either the truth or usefulness of such internal 

constpXs, the success of the internal state modelling strategy is predicated on a successful actor's 

having access to goal-specific information and goal-relevant control along the goalpath The field 

notion also putatively captures the sense of the social invariance of the information and control 

opportunities which 

(a) allows an observer to see which goal an organism is most likely pursuing, and 

@) allows different organisms to compete for the same g o d  

Hence one may debate whether the field of information and control manifests itself internally 

(as cognitive psychologists maintain), externally (as behaviorists have maintained), or dually (as 
we ecological psychologists propose), but the field's existence is without question, being assumed 

by all parties alike. (See Shaw &Todd, 1980; Shaw & Mingolla, 1981; and Shaw, Kugler. & 

Kinse5-Shaw, 1991, for a comparative description of these alternative approaches). 

Regardless of whether navigation is achieved by direct or indirect perception, the actor's 

control process must maintain invariant contact with the intended goal over some dynamically 

developing course of action-a potential goalpath Consequently, a theory is needed for what 

constitutes goalpaths, and how they are recognized, selected, and followed. We assume that a 

goalpath is generated, as a segment of a worldline in space-time, by the actions of the perceiving- 
acting cycle engaged by the organism. Before considering the details of how this engagement is to 

be formally characterized, we consider the general inniitions that underwrite the intentional 
dynamics approach to this problem. 
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1.1 Modelling Systems that Exhibit Intentional Dynamics 

Intentional dynamics inter alia faces two problems: 

First, how Is theperceiving-acting cycle wnprising a dual relationship between information 
and control to be formally described? In Section 2 an answer is proposed from the perspective of a 

variant on optimal control theory called adjoint systems theory (Shaw, Kadar, Sim, & Repperger, 

1992). 

Second, how Is the field of  conjugate information and control values available to the 

perceiving-acting eye& to be made formally explicit? Here we borrow from quantum mechanics 

the image of a panicle being involved in measurements as it moves through a field toward an 

atlractor.4 

The goal of Section 3 is to provide the generic mathematical description of an organism with a 
complex interior, being driven by internally produced forces and guided by externally available 

information onto a goalpath toward a future goal-stale. This image of a complex animate 'particle' 

exhibiting intentional dynamics in a field of information and control replaces the standard image of 

a particle with a simple interior, being driven by outside forces onto a 'least action' path that is 
indifferent to any future goal state. 

Given an actor at some space-time location who intends to connect with an accessible target at 

some other space-time location, then there will exist a family of causally possible goal-paths. This 

set is bounded in space-time by the maximum rates of causal action allowed by the (e.g., 

locomotory) capabilities of the agent who intends the goal. For convenience, we call such a 
bounded region of goalpath possibilities. an Iomega  ) cell -a construct of ecological physics 

which falls between the cosmological scale and the quantum scale (Shaw & Kinsclla-Shaw, 1988). 

At each moment, along each path there is a certain amount of energy the agent must control if the 

action is to be in the goal's direction. The amount of control is perceptually specified at each of 

these points on each goalpath by goal-specific information. What form does this specification 
take? 

This question poses, in part. a version of the so-called "inverse dynamics' problem for 

psychology (Shaw, Kugler, & Kinsella-Shaw; 1991). whose solution has been discussed 

elsewhere (see Saltzman & Keko, 1987; Shaw. Flascher, & Kadar, in press). But since the agent 

could be on any one of a number of paths, then some perspectivally weighted information and 

the literature wh& goal-directed behavior is aimbuied to dynamics on a physical anractor basin. The solution called 
for must be much more abstract. I1 must be defined over organism and environment, rather than either alone. Hence 

must be an ecological physics manifold. 
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control quantity must be available at each point on each possible path. Quantum physics (as 

d i i  in Section 3) offers us a lesson on how to do such weighting. 

In Section 2, in preparation for the quantum field treatment, we show how, even in classical 

physics, a single quantity exists as an inner (scalar)product of information and control which is 

defined at each point along the goalpath (Shaw, Kadar. Sun, & Repperger, 1992). We offer the 

following intuition as to what this means: From the internal frame of the actor, one might think of 
the control-specific information as a wave crest that accompanies the moving agent at each point 
along the goalpath-from initial to final condition. Let's call this a 'knowledge wave' since it 

embodies all the dynamical knowledge about the goal (namely, where it is and how to get there) 

available to the actor as an acting perceiver. 
Alternatively, from an external frame of a scientific spectator, one might think of the 

'knowledge wave', as it moves over the distribution of possible paths, as specifying at each point, 

on each path, the likelihood that a perceiving-actor, who intends the goal, will be found there. 
Hence intentional dynamics assumes that well-intentioned, normally competent actors will tend to 
go where goal-specific information is most likely to be found and goal-directed control is most 

likely to be achievable. Our aim in this paper is to show that the existence of such a "knowledge 
wave' is by no means fanciful under the conception of intentional dynamics, as developed by us in 

earlier papes-although such a dynamical construct as a "knowledge wave' has not before been 

introduced. Consequently, all the mathematics that follow are designed to explicate this intuitive 

interpretation Our aim will be to show that when the knowledge wave embodies information and 
wntrol that are only adjoint with respect to the root, then the actions taken can at most be relevant 
but unsuccessfuL However, when they are self-aajoint, then the actions are, by definition, both 

relevant and successful. 5 

Before mathematically developing this new explanatory construct. let's consider the current 

status of the theory of intentional dynamics that has emerged over the past five years or so. The 

purpose of the next section is twofold: To clarify what one might mean by the claim that actions 

must be situated in an intentional context and to give an overview of the problems that a theory of 

the intentional dynamics of such situated actions must face- We also indicate the extensions to the 

theory proposed by the current effort. 

1.2 Intentional Dynamics: An Overview 

In eariier work we proposed representing the perceiving-acting cycle of an actor as a 

continuous (Lie) group of complex involutions- This approach draws its inspiration and borrows 

its mathematical techniques from classical mechanics (e.g., Goldstein. 1980). The virtue of the 

This norion o f  self-adjoin- has been developed elsewhere under ihe guise of miprodties of an intoitional 
System (Shaw. Kuglo, & KinseUa-Shaw. 1991). 
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continuous group representation is that it allows one to characterize the 'intentional' action of 

systems as the 'flow dynamics' of a generalized Hm'bonian action potential which follows paths 

dictated by a least action' principle. We have called this generaliked approach imenfional 

dynamics and attempted to clarifyrhe notion of the new action potential as follows (Shaw, Kugler, 

& Kinsella-Shaw. 1991): 

For a flow to exist [over a goalpath], there must be a force. A force can be defined as 

the gradient of some potential. In some sense a goal can be said to exert an attractive 

force on the system. The sense we suggest is as some kind of potential difference 

between the endpoints of a goal-path. For this to be more than mere metaphor, we must 

find some way of allowing the interior gradient of the organism's metabolic potential to 

interact with the exterior force field of the environment. This can only take place through 

the detection of perceptual information which, in turn, must guide the controllers of the 

neuro-muscular actuators. Hence the relevant potential difference, or goal-gradient, can 

only be defined over an interior (metabolic) potential relating the initial state of intending 

the goal to the final state of arriving at the goal This gradient must also reflect the 
difference between a system's current manner of behavior where it is and the desired 

manner of behavior where it wants to be. 

The trick is to get the interior gradient and the exterior gradient linearly superposed so  

that their resultant is the desired goal-gradient. But this raises another problem. What 

kind of strange potential is the goal-gradient to be defined over? What is this superposed 

potential that is neither solely energy nor solely information but both? We call the 

resulting potential a generalized action potential. Whatever this generalized potential is, it 

is what flows in bi-temporal directions, between the interior and exterior frames, over the 

perceiving-acting cycle. Furthermore. it is also what must b e  conserved under the 

intentional 'dynamics of any system when successfully seeking a goal (pp. 595-596). 

In Shaw, Kugler, & Kinsella-Shaw (1991). we proposed a way that this 'trick' of superposition 

might take place. Furthermore, it was shown how such a generalized action potential might exist, 

as well as how such a quantity might be conserved (under the Liouville theorem) as a fundamental 

dynamical invariant of intentional systems. 

On the other hand, this 'classical' approach failed to make clear how a particular goalpath is 

selected by the system from all causally possible goalpaths, rather we  described mathematically 

Only how the perceiving-acting cycle might move down which ever goalpath was selected. As in 
the original paper by Shaw & Kinsella-Shaw (1988). the 'extraordinary boundary conditions' 

posed on a dynamical system by the selection of a goal are not defined, only assumed. In the 
Present paper we seek to remedy this problem. Here we offer an explicit mathematical description 

Shaw. Kadar. & Kinsella-Shaw 
Intentional Dynamics 

of how an actor's intention to pursue a goal automatically does two things: First, the intention to 
act imposes the 'extraordinary' infermanon and control boWmary conditions on the action taken, 

and, second, the achn selects ifnot the actual goalpath, ther. the mostprobable one to be 

followed. 
Furthermore, we need to show how getting the appropriate mathematical description of  the 

generalized action potential assigns a probability value to each path in the distribution of potential 

goalpaths. The probability value provides a likelihoodestimate of the path being selected by the 

perceiving-acting cycle as the 'best' route to the goal, given the confluence of environmental and 

biomechanical constraints. 'Best' here means the practicable compromise between the 

mathematically ideal and the physically achievable, what can be thought of as the tolerably 

suboptid path (Shaw. Flascher, & Kadar, in press). But how are information and control to be 

coupled to form a perceiving-acting cycle that can select such a goalpath? 

Between the moment of the intent to pursue a goal and the successful attainment of the goal, 

(here exists a functionally defined, space-time region in which the intentional dynamics, of the actor 

is well-defined. In four dimensional geometry any dynamical process is represented by an event 

which develops over a woridlinc segment. To understand intuitively the geometry in which goal- 

directed actions take place, one might first build a geometry for events (Shaw, Flascher, & Mace, 

in press). For example, Figure 1 shows the standard light cone from the Minkowski rendition of 

special relativity. (Here the third spatial dimension is omitted). The backward temporal cone, 

called the domain of (causal) influence, indicates all those events 6 in the past that might causally 

affect the event at the origin (vertex). By contrast, the forward temporal cone, called the domain of 
(causal) dependence, indicates all these events in the future that might be affected by the event at 
the origin. 

(Insert Figure 1: A Minkowski Light Cone) 

The standard light cone is not adequate for depicting goal-directed behaviors since its worIdIines 

are unbounded Instead, we need a new fourdimensional geometry in which the worldlines 
representing go&hrxed actions are bounded by endpoints. Figure 2 depicts this new geometry. 

Imagine, for sake of illustration, that you are given (he task of spinning a turntable manually 

through four successive half-turns (4 x 180"). The kinematics of this goal-directed action is shown 

below. 

In space-time there are point-cvtnis and waridline paths for ongoing processes. Here we considered events to be 
finitely bounded segments d woridlines. 
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(Insert Figure 2: An D-cell Geometry fora God-directedAction) 

The-Q-cell's four dimensional geometry is J lattice structure, and therefore has three possible 

partitions (see Figures 2 and 3): the maximum partition, or least upper bound, noted by Q-cell= 

(Urnax. the minimum partition, or greatest lower bound, noted by a-cdl= (~min. and the 

intermediate partitions, noted simply by (tt-csll =a Thus, in general, any fonn of goal-directed 

behavior will have a lattice structure within the geometry of the Q-cell as indicated by 
fl-cell=q,- 2 a 2 ~ =  a-celL 

In the turntable task, the Q-cell partition corresponds to the overall intention of rotating the 

turntable through 720"; the (fl-cell partition corresponds to the subgoals of rotating through two 
fall rotations (2 x 360"); and the a-cell partition cornsponds to the four 180" ballistic rotations 

(below which no choice-points are possible). A similar analysis generalizes to any goalpath with 

any number of partitions. 

(Insert: Figure 3: A Schematic acell Showing its Nested Parzittons) 

An econiche for an organism (or species) is defined by Iww it lives in its habitat Affordances 

present opportunities for action since they are possible goals. The character of an econiche is 
determined by its affordance structure. Indeed, an econiche is its affordance structure. 

EffectiVIttes correspond to the means required to carry out a control law by which an affordance 

goal is realized (what Gibson, 1979, referred to asa rule for the perceptual control of action). The 
repertoire of effectivities possessed by an organism determines what kind of actor it is. Indeed, an 
actor is its effectivity repertoire. In this sense. an ecosystem is the union of the affordance 

structure of an econiche and the effectivity system of an actor (or species of actors). A situation 

refers to where die relevant causal and informational constraints for an action exist An occasion 
refers to when the need or value motivating the action is felt An effecdvity is brought to bear on an 

aSbidance goal when the actor intends to act so as to satisfy a motivating need or value. 

All these ingredients (need or value, affordance goal, effectivity means, and intention, together 

with the implied forces to be controlled and i n f o d o n  to be detected) must become a coherent 

unit of analysis if the intentional dynamics of an entailed action is to be understood. The theoretical 
construct under which all this comes together as an organized whole is, of course, the fi-cea 

An organism's life as an actor is a 'riling' of space-time by a concatenation of Q-cells whose 

partitions parse the worldline of the actor from birth to death. Intentions are choices of affordance 
goals which functionally create the Q-cells to be entered and hopefully crossed. The crossing 

requires the 'assembling' of an effectivity to engage, direct, and tune the appropriate perceiving- 
actkg cycle to the exigencies of the task situation- The a-cell partitions of an Q-cell represent the 
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tolerance limits on information detection and energy control-below which a kind of Heisenberg 
uncertainty is encountered The &cell partitions designate those choice-points in control where a 

bifurcation set of-possible paths exists. Here the actor, given an up-date on perceptual 
infonuation, can alter the manner of approach to a sub-goal without abandoning the global goal 
defining ̂he parent Q-ceIL These are the minimal constituents that must be captured in any theory 

of the intentional dynamics underwriting goal-directed actions. These intuitions are made formally 

explicit in Section 2 and 3. 
Although functionally defined, Q-cells have an objective reality. They determine the 

boundaries on behaviors which are tolerant of the same goal (~e., target plus manner). Such 

nonlocal goal constraints have the same ontological status as forces in physics, for which evidence 

is also only functionally defined as a relationship between masses and their observed accelerations 

(direction and speed). The tolerance class of goalpaths (ii- each being a velocity field) are 

parametric (manner) variants whose underlying invariant is their common goal-duectedness. 

Where the @brdance god determines the final condition which constrains the resultant direction of 
the paths, the effectivity chosen determines which of the possible goalpaths within the Q-cell is  to 

be followed. Hence, in the case of a successful goal-directed behavior, an affordance goal-a 
functional property of the environment- is always complemented by an effectivity- a functional 

property of the actor. The intention, as a cognitive attunement operation. brings the necessary 

control and information to bear on the biomechanics of the actor. So long as the intention remains 

invariant, and ceterisparibus, the actor is perceptually guided down the goalpath. 
Others have attempted to explain goal-directed behavior. but without the Q-cell construct to 

consolidate the 'common fate' or 'dctenninimg tendency' of the variant but goal tolerant paths, little 

mathematical progress was possible (Ashby. 1952; 1956; Sommerhoff, 1950; Weir, 1984; Rosen, 

1985). By building our theory of intentional dynamics around this fundamental concept, we show 
how the perceiving-acting cycle might be situated in an intentional context. 

In the next section, we show how the perceiving-acting cycle can be modelled as a set of 
adjoint differential equations. Here the k l l  makes its appearance indirectly under the guise of a 

famous theorem regarding adjoinmess in control t h e o r y 4  Kalman Duality theorem ( K h a n .  
Englar, & Bucy, 1962). Fmally, in Section 3, we show how the Feynman path integral approach 

(a version of quantum mechanics) can be combined with a generali2ed form of the Kalman Duality 
theorem. By doing so, we endeavor to obtain a complete and coherent account of the intentional 

dynamics by which a perceiving-actor 'knows' how to select the 'best' goalpath from among all 
possible alternatives. 
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2.0 The Classic Adjoint Systems Approach to the Perceiving-acting Cycle 

Let us begin by anticipating what this section will show. A perceiving-acting system might be 
represented by a pair of dual differential equations~with one equation representing the system's 
control of energy and its adjoint quation representing its detecting of information The pair of 

such equations are said to be temporally dual when self-adjoint because the original system 

exhibits a flow of time-forward control over the same space-time path that its adjoint system 

exhibits a counter-flow of time-backward information- Figure 4 portrays schematically the self- 

adjoint relationship proposed for information and control equations. Note how these quantities 

'flow' in opposite temporal d i o n s ~ w i t h  each endpoint doing double duty, serving as a 
repellor for one quantity and an attractor for the other quantity. 

(Insert: Figure 4: Temporal Self-aajointness of the Infonnarion and Control) 

2.1 The Differential Approach to  Adjoint Systems 

The original control system equations are represented by a set of simultaneous differential 

equations written in matrix form, called a state vector differential equation as follows: 

which includes: (a) the derivative of a column matrix, x(.t) = drL4 representing she rate of change 

of state of the system: (b) an n xn square matrix. Aft ), which with another column matrix 

consisting of n-state variables, x(t (called the original state-vector) represents she system to be 
controlled; and (c) an n x p  matrix. B(t j ,  which with a p  x I matrix of inputs, 4 t  ), represents the 

control vector which sends the system into a new dynamical state configuration Thus the vector 

(matrix) difference equation depicted in eq. (2.1) relates the rate of change of state of the system to 

the current stale of the system and the current input signals. This differential equation is 

mhomogeneous and, therefore, represents a nonautonomous system because of the existence of 

B(t ) uft )-a time-dependent control (forcing) term. We want to solve this equation to see if the 

specified control vector will send the system from a given initial state at dto) to an intended final 

State aWt/) over an intended goalpath (defined by the intended manner of approaching the intended 

target). 
The solution to this system, called the steeringfunction, is given by the inhomogenwus 

integral equation 

(2.2) 
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where <P (z, to)  and <P (t, s ) are the smdransition (or fundamental) matrices of the free 

(autonomous) system given by 

defined over the interval [to, tff. Associated with the system depicted by eq. (2.1) is an 

observation vector y(t), an m component vector which satisfies 

Y ( . t ) = H ( t ) x ( t )  (2.4) 

where H (t ) is an m x m  matrix relating the observation vector y(t) to xft). 

Before presenting the associated adjoint equations of information, one should note that the 

notion of adjointness is strongly dependent on the given space within which it is defined. Here the 

adjoint system is presented without any generic definition being given. (However, a specific 

definition is givenin Appendix A) 

If the system of control equations is real, the adjoint system associated with eqs. (2.1,2.4) is 
given by 

and 

Czfr) is specified and eqs. (252.6)  are integrated backwards in time. The superscript Tindicates 

matrix transpose (or its conjugate in the complex case)'. One can now define the dual properties of 

system eqs. (2.1, 2.4; 2.5.2.6). such as, complete controllability and complete observability, by 
which the role of action and perception in a goal directed (intentional) behavior can be modeled. In 
addition, one can also define the inner product operator, the means by which perceptual 

information can be scaled to the control of action. 

2.2 Controllability, Observability, and the Inner Product Opera tor  

Definition: The action of the system, represented by eqs. (2.1.24). is completely controllable if - 
there exists some input u(t) which takes the system from any initial state x(lo) to any other state 

dtf) in a finite length of time (/> to. This property holds if the following matrix is nonsingular for 
some tf > to: 
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The measure of complete controllability is related to the minimum amount of control energy uft) 

necessary to transfer x(to) to xftf> in q-to seconds. 

Of interest to determining the optimality of the control is the degree to which the amount of 

work done approaches the niinimum. For this one needs an equation defining minimum energy: 

Small values of W(ty t/) imply little controllability, since large amounts of energy are required to 

transfer xfto) to x(lf) and conversely. 
Perceptual information guides action; hence a duality must exist between the energy required 

for control and the information that provides the measure of control Such a measure is guaranteed 

by the duality of complete controllability to complete observability. This condition is defined next 

Definition: A system's state path is said to be completely observable if it is possible to determine 
the exact value of -cfto) given the values of fit) in a finite interval (to, tf) where ty < if. . The 

original system represented by eqs. (2.1.2.4) is completely observable if the following matrix is 

positive definite for some t/> W. 

~ { u t o ) =  t i k . t o j ~ ~ ( o ~ ( o q t , w r .  f (2.9) 

It is important to note that there is a close relationship between these system properties. 

A system is completely controllable if and only if its dual (adjoint) is completely observable. (See 

h m a  1 in Shaw &Alley, 1985; Shaw, Kadar, Sim, &Repperger, 1992, p. 21.) 

Analogous to the case of minimum energy, one can ask what happens to information when the 

system successfully achieves control of action with respect to some goal. Given the duality of 

complete observabiity with complete controllability, then whenever energy is minimized 

information must be maximized. Thus, the measure of complete observability is related to the 
maximum amount of perceptual information as follows: 

Max Info = y Tlf) M-I(q. (o) Hq). (2.10) 

We have now arrived at the famous Kalman Duality Theorem: 

The h f m a n  Duality Theorem: Complete observability is dual with complete controllability. 

Corollary: Therefore if energy is minimized. then information must be maximized. 

The last item of interest is the inner product of the original system with its dual, for it provides 

a global measure of the amount of control exercised as compared to the amount of information 

detected over the task interval. 
DefininO~f Inner Product Operator is a bilinear function defined over any pair of elements 

(x and y)  of a vector space 

Using the above definition, the inner product over the states of the original system and its adjoint 

happens to be a dynamical invariant In other words (r. a) = x b =  c (a constant). 

These results may be further generalized. They can be extended to systems with hereditary 

influences, sometimes called systems with retardation, or time lag. (For farther details consult 

Shaw & Alley, 1985; Shaw, Kadar, Si,  & Repperger, 1992). 

2.3 The integral approach 

It is well known that all differential equations can be formulated as integral equations. Using 

the operator notation, the inverse relationship between the differential equations and integral 

equations is made even more transparent For this reason, and for its simplicity, the operator 
formulation is used. Let us consider the following second order differential equation as an 

exemplary case. 

where L denotes the second order differential operator 

L = p(x) #/'x + q(x) d/dx + rfx), that is L : y(x) -> g(x). (2.13) 

From the operator formulation naturally emerges the idea of using the inverse L-I operator to  find 

the solution of a particular differential equation. The inverse operator will be an integral operator 

Recall the eq. 2.1 (here rearranged) for the actor's control system 

A(t) - A(t)x(t) = B(t)u(t) with -((A)) specified. (2.15) 
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Using the differential operator notation this takes the form L[x(t)] = B(t)u(i), 
The solution given by integrating the above differential equation (eq. 2.2) was (shown rearranged) 

From this specific example, we can see the role played by the Greens function by going to a 

generic form: T h e  G kernel function is called the Green's function of the operator L. For the given 

control equation, the inverse operator takes the form, 

Here the <SKr, s )  plays the role of the G kernel .' 

Consequently, the right hand side of eq. 2.14. the integral part, represents the superposition of 

the intrinsic, quantized influences localized within the scope of system's law, as expressed in the 

integral fonn. That is why the Green's function is often called the influencefunction (Greenberg, 

1971). Unfortunately, in practical application there are severe difficulties with this technique (see 

Appendix A). 

2.4 Self-adjoint System Equations 
Why is the adjoint system not adequate as a way of modelling the perceiving-acMg cycle? 

Because adjoint system equations have terms representing sources of extrinsic influence. We need 

to make a transition from adjoint systems with extrinsic influences to a stronger form of adjoint 

systems, namely, to self-adjoint systems. To achieve the self-adjoint fonn, however, one must not 

only get rid of the extrinsic sources of influence but satisfy certain symmetry conditions as welL 

Self-organizing systems are conditionally isolated: that is, they sometimes act solely in accordance 

with intrinsic constraints because they are self-adjoint. (But take care, the physics of adjoint 

systems as compared to self-adjoint systems is complicated. Here we have used a simplified 

approach. For a full discussion of the issues, see Santilli, 1978; 1983). 

Definition: A system is self-adjoint if it coincides with its adjoin! 

How one might obtain the self-adjoint equations for a conditionally isolated system? They may 

be obtained using Greens function technique and selecting the proper transformations (Santilli, 

1978; 1983). Shaw &Alley (1985) formulated the information and control relationships between 

an organism and its environment as a dual pair of dual integral equations (See   able I). These are 
self-adjointintegral equations because they have symmetric kernels. The 2 x 2 symmetry of these 

kernels represents the bidiirectional propagation of information and control over the actor's 
perspective and the environment's perspective (see Table II). In psychological terms, these have 

been identified as propriospedfic (organism referenced) and externspecific (environment 

referenced) forms of information and control- And in addition to these, one can also identify their 

interaction terms (see Shaw, Kugler, & Kinsella-Shaw, 199 1).8 

(Insert Table I: The Integral Equations Representing the Perceiving-acting cycle) 

(Insert; Table U: The Adjoint Operators Representation of the Perceiving-ucting Cycle) 

2.5 Why a Quantum Approach is Preferred over t h e  Classical Approach 

So far we have presented only one half of the "story", namely, we discussed dual adjoint 

systems rather than the dual pair of dual systems. The need for the four component subsystem 

equations suggests that the underlying structure is the complex involution group. This is one of 

several motivations that lead us from the classical adjoint-control theory to the complex Hilben 
spaces and the quantum theory of psychological ecosystems thereby entailed. 

Another motivation for moving to a quantum mechanical interpretation of intentional dynamics 
can be understood from Feynman's attempt to answer a problem with the classical approach raised 

by Poincare' (1905/1952). In Chapter Vn of Science and hypothesis and echoed by many others 

ever since, Poincare' remaits in passing that the assumption of the principle of least action by 

which one passes from force-based mechanics to a potential (energy)-based mechanics involves an 

offense to the mind: 

"The very enunciation of the principle of least action is objectionable. To move 

from one point to another, a material molecule, acted upon by no  force, but 

compelled to move on a surface, will take as its path the geodesic liie-i. e., the 

shortest path. This molecule seems to know the point to which we want to take it, 
tp foresee the time it will take to reach it by such a path. and to know how to choose 
the most convenient path. The enunciation of the principle presents i t  to us, so to 

speak, as a living and free entity. It is clear that it would be better to replace it by a 

a These integral equations are directly related 10 (be differential equation approach to adjoint systems by Shaw, 
Kadar, Sim, & Rcppcrgu, 1992). 
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control selects the goalpath it does. Only here, the global Held constraints express, to a large 
less objectionable enunciation, one in which. as philosophers would say. final extent, the intention of the actor rather than just the forces imposed on the 'particle' by the 
effects do not seem to be substituted for acting causes" (p. 128-129). environment The actor, through detection of information about an intended affordance goal, 

If one replaces the word 'molecule' with the word 'actor', then hardly a better description of a selects the boundary conditions (the fl-cell) for the field by which it controls its action, by means 
system with intentional dynamics is to be foundanywhere. But here it seems inappropriate, for it of the effectivity engaged- The field is the bounded Eitellung ('determining tendency' plus 
amounts to anthropmorphizing inanimate panicles. The danger that the variational approach to boundary conditions) authored by the actor's intention, under the appropriate affordance-effectivity 
mechanics might tempt theorists to anthropomorphize particles is still recognized today. Feynman, compatibility condition 
who developed a version of quantum mechanics which addresses this issue expressed this The inanimate particle, on the other hand, has to take whatever field that nature hands it. Put 
problem: differently: The relevant wave which coalesces around the 'animate particle" is not merely a focus 

"It isn't that a particle takes the path of least action but that it smelk all the paths in the of global forces that completely controls its actions, but rather a knowledge wave, consisting of 
neighborhood and chooses the one that has the least action by a method analogous to information as well as forces that allows it informed control. In more psychological terms, this 
the one by which light chose the shortest time" (Feynrnan, Leighton, & Sands. 1968; explains how intentional dynamics can situate the perceiving-actor in an intentional context (an 
p. 9, chpt 19). 9 EiteUung = an Q-cell). to 

Our goal in the following sections is to show how a move to a quantum mechanical approach 

removes the 'offense to the mind' that concerned Poincare' and others. It does so by making 
plausible the thesis that behaviors of panicles follow probabilistic waves rather than having a 
simple location on a force gradient. Through constructive and destructive wave interference the set 

of possible trajectories of the particle coalesces around the classical path of least action. indicating, 
not where the panicle is, but where it is most likely to be found. The outcome of this move to 

quantum field theory is that the particle is constrained to the path observed, making it unnecessary 

for the panicle to select its own path. Here, however, determinism (simple location and certainty) 

is traded off in favor of a tolerable degree of indeterminism (distributed location and uncertainty). 

Formally, we need to provide the generic mathematical description of an organism with a 

complex inmior, being driven by internally produced forces and guided by externally available 

information onto a goalpath toward a future goal-state. This image of a complex animate 'particle' 

exhibiting intentional dynamics in a field of information and control replaces the standard image of 

a panicle with a simple interior, being driven by outside forces onto a 'least action' path that is 

indifferent to any future goal state. 

The move to the quantum mechanical approach, vis a vis the Feynman path integral, provides a 
way to conceptualize how a particle 'selects' the classical stationary path (up to Planck's constant). 

We shall use this technique to explain how an actor having access to a field of information and 

+-b--t- - m m ~ ~ w ~ * t h e * & ~ ~ ~ * d t r a ~ o f  
stationary action is DM at all clear. Tlic initial velocity is im given, so (hat the panicle win not 'know' in which 
directiomo -off and how fast to go. It is IKX ckar bow the particle can 'feel out' all trajeclorte and 'ctioosc' the 
M q  CQC. It should be kepi in mind that classical physics docs not recognize any path oAcf lhitn the statio~ary 
pah. Tills. Out of a whok set of hphysical" paths, ind-cduccd a priori, the classical principle of stationaiy d o n  
selects a unique physical trajectory through some mechanism which is not readily apparent" (Nariilar & 
Pi><laiaoabhan, 1986; p. 12) 

3.0 Quantum Mechanical Approach to Intentional Dynamics 

The new strategy, which we propose to adopt, originates from a unique approach to quantum 

mechanics suggested by P-A.M. Dirac and developed by Richard Feynman (Feynman & Hibbs, 
1965). This new approach, called the Feymmmpath integral, involves h e  formulation of the 

quantum mechanical behavior of particles in terms of generalized, or dirmbution, functions 
(Schwa* 1950, 1951). Distribution functions (e.g., Dirac delta function or Heaviside function) 

are defined only under integrals. The Feynman distribution function11 is defined under a special 

class of integrals that describe the sum over all possible path histories that a given panicle might 

have had! 

Our thesis is that perceiving-acting systems follow paths chosen from among a family of 

possible paths in the same manner that Feynman particles do. There is a major difference, 

however. For systems that are not just causal, as particles are, but are both causal and intentional, 

as perceiving actors are, then we must not only sum over their possible path histories but, dually, 

over their possible future paths as well. This is the way that controllability (~e., causal) and 

observability (is., intentional) are represented under the Feynman path integral approach. By 

lo Let's be dear about what claims we are making about the ontological status of the 'knowledge wave' field that is 
encoinoassed bv the 0-all and set by (he actor's intcniioo. It is not objkdvc in the sense of being in (he 

I& is it subjective, in die -sense of being a cognitive Â¥map &other menial COWNCI. Surely, ibis 
Geld is causally sminonrd bv boÃ  ̂neunxlynaaucal and d~ysical processes, ax) sinictmcd by psychological 

(c.~, values, needs, beliefs, etc.) of (be actor. In ifais sense, is 
funoiooally dcfiiKd at an ecological Ka/t which comprises all these processes. 

In the equation f a  the Feymnao path integral, (be distribution function, Dx(t). replam tbc ordinary d(x). See eq. 
(333). Later. in dualirinc the oath inlefral for the purposes of inuntional dynamics. Dx(O wiB be inlcroretcd as . -~ 

h [ t ]  which is tobeinteipreted as being simultaneo&ly Dx(+I) and h(-I), t a t  is, as running in both temporal 
directions over all paths in (be dismbulion. 
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dualizing this distribution function to express the temporal bi-directionality of information and 
control, the Q-cell is automatically and necessarily obtained. 

It is well-known that all the properties of quantum mechanics can be derived from either the 
Schrodinger wave equation approach, the Feynman path integral approach, or Heisenberg's matrix 

approach. The formal relationship of the differential approach and the integral approach to 

quantum mechanics is the same as the relationship of self-adjoint differential equations and the 

symmetric kernel integral equations.12 (We shall be interested. for reasons that will become 

apparent later, in comparisons of only the f i r t  two approaches.) In other words, the differential 

(wave) equation and the (path) integral equation approaches provide fonnafly equivalent 
descriptions. There is, however, an important difference between the two approaches. In the fust 

case, the differential wave equation is a generalization of Newton's laws giving a step-by-step 
development of a particle's path in a manner that confounds dynamics and initial conditions. In the 
second case, the path integral approach is a generalization of Hamilton's variarional approach 

giving apath-by-path account of a particle's possible histories, but in a manner that allows 

dynamics and initial conditions w be separated. 13 

Hence if the conditions that initialize (or finalize) a path are to be studied independently of the 

dynamic laws by which the path unfolds (causally by control or anticipatorily by information), then 

it is advisable to assume the path integral approach and to derive the wave equation applications 

from i t  In this way, the probability amplitudes might still be of service, as we shall see, and one 

avoids loss of separation of boundary conditions from the dynamics. That is, it allows the 
boundary conditions on intentional dynamics, the Q-cell, to be treated as a separate but related 

problem. 

3.1 The Differential Approach to the Adjoint Quantum Mechanical Model 

Thus, depending on the problem, we can use either of the two methods in formal analysis. 
However, to make clear the modelling lesson to be learned from quantum mechanics. and how 

quantum mechanics relates to the adjoint systems approach, the differential approach proves 

- - -  

also be noted that there is a formally analogous relationship between the Hcnnitian (self-adjoint) matrix 
Heisentugs martx mechanics and Ac adjoin! differential eq&m approach of Scnrfldingds wave 

l3 Though mathematically equivalent, the wave equalion and path integral equation are not physically equivalent. 
The function v< i  0 depends both on the dynamics and on (be initial condition Hxj, if). As shown in q. (3.1). 
there is W way to separate these two aspects of a physical description. Nariikar & Padmanabban (1986) explain it 

WY: "There exis physical simaliom in which we would like to study dynamics of the System without 
conunitting ourselves to any particular initial d l ions .  The tend is the most suitable f a  such cases, siuce (cq. 
3.41 dearly separates out (be initial conditions from the dynamics. In short, the kernel is independent of the initial 
coiKfida and qrcscnu tbc dynamia d i k  the wave furdon y(q. t) dcp<-iKls on  bod^ r k  dynamics and tbc inilial 
o x K B h "  (p.m. (Equation numbers are tar (he currcot paper.) Also, wheie no wave equation can be oonslnicial 
thai is independent of end-points, a path integral can be. (See Fcynman & Hibbs, 1965. for (he construction of such 
a path integral. 
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simpler and more convenient. Most importantly, adjointness belongs to properties in the 
Schrodinger equations that are more transparent. To illustrate this point, examine the Schradinger 
equation (3.1) for a panicle moving in one dimension in a potential field and then compare eq. 

(3.2) With it's (complex) adjoint in eqd3.3.): 

This equation is one specific form of the general Lagrangian 

h a w -  a~ - - Hy or equivalently ftÃ = H y  
a t  at 

where H represents an operator, called the Hamiltonian operator. Similarly, their complex 

conjugate (adjoin!) equations 

9~ a~ 
-=H* \y  or equivalently -ih~ = ~ * \ y  

at at 

can also be formulated. (Note: The '*' is used in quantum mechanics to denote complex 

conjugacy.) For the Schrodiger equation, the generic fonn of the associated integral equation will 

be (see more detailed discussion in Section 3-5) 

where 

This equation provides the standard way to show the equivalence of the differential and the path 

integral approaches. By simple differentiation in (+t) time yields the Schrodinger equation (For 

ease of presentation, the derivation of the dual Schrodingcr equation is suppressed; it should be 

clear, however, that it is obtained in parallel fashion from the dud version of eqs. 3.4 by 

differentiation with respect to -2.) 
The differential operator of the (dual) SehrBdinger equation is defined on the wave functions 

as their solutions. The nature of the equation implies that the Schrodiger differential operator 

maps solutions into other solutions, that is the domain and the range of the operator consists of 
wave functions only. This implies that, technically speaking, unlike what is usually the case, the 
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Inlenuonal Dynamics In the classical case the inner product is a bilinear form over two finite dimensional vector 

integral equations are not more difficult to handle than the differential equations. (The discussion 

of how the adjoint equation relates to observation/measurement will be discussed later). 

Obviously, these quantum equations (eqs. 3.1.3.2.3.3) generalize the form of the classical 
core eq. (2.3) of the dual system of linear differential eqs. (2 1-2.6) that were used in the adjoint 

control approach. However, there are two major differences: the treatment of both the forcing 

functions and the boundary conditions will be much simpler in quantum mechanics. 

Consider the role of forcing functions. In the classic case x(t) = A(t) x(t) is called a free 
system meaning that it is autonomous. The generic form of control eq. (2.1). however, contains 

an extrinsic B(t)u(t) term. By contrast. in the SchrSdinger equation, there is no extrinsic term, that 

is, the extrinsic forcing components are formally not separated. Rather the forcing factors are 
automatically absorbed into the H operator.14 Nevertheless, this strategy is not without cost, for 

the Hamiltonian operator can take rather complicated forrns.15 Regarding the boundary conditions 

similar arguments can be made. 

3.2 Controllability, Observability, and the Inner Product  in Quantum Mechanics 

As in classical adjoint systems (Section 2.1). an inner product can also be defined on the space 
I 

of the wave functions in the usual way. But here we must take a different route (0 interpreting 

observability and controllability. The fundamental problem here is that the Hamiltonian cannot be 
separated into an informing pan and a controlling part. 16 This is the price paid for the simplicity 

of adjointness in quantum mechanics, as compared to classical adjoint systems theory, where 

control and infomation could be separated. In other words, only a weaker form of the Kalman 
Duality theorem holds in quantum theory. Furthermore, it assumes an implicit rather than an 

explicit form. Thus, although the discussion of information and control in the quantum case must 

differ from the classical case. the key to the adjoinmess property in both cases is the innerproduct 

concept. For these reasons, we begin our discussion with the inner product operator. 

l4 cases where the system can be conceived as an almost isolated one (with HO H a m i i ) .  and there is a weak 
interacting component (with small Hd. then the HamiIW of  this system can be written as a sum of  the two 
Pam = HO + Hi,,, . Even Gum Ihis splitting, it has to be transparent (hat any external influence which changes 
the system, is modelled with a sudden abscuption by using an additive interactive component 

As a simple example of this fact, consider a charged panide moving in a magnetic field. 

(3.4) 

wfacrc e is Ifac Charge, cis the velocity of tight, A is a vector potcna  and @ is a scalar potential- Even f a  this 
laiber simple case, the Hamiltoniau is quite complicated. namely. 

. - .. 
I6 Even if. under swing simplifying assumptions, one could separate ibe Hamiltonian f a  a single panicle in a 
field, for a partick with a complex inlcrior this will no1 be possible. 

spaces that is formally a finite sum. By contrast, in the Hiibert space of quantum mechanics, 

defined over continuous functions, the inner product operator takes an integral form. 

Definition: Let f and g be two probability amplitude (wave) functions, then fg (x)  *fxJ dx is 
called the inner product off and g. 

The inner product operator is closely tied to a given quantum mechanical system, that is, to its 

Harniltonian. How can we unpack this inner product operator to reveal observability and 

controllability as separate factors? Unpacking the inner product operator will have profound 

implications for how one interprets the perceiving-acting cycle as situated in an intentional context 

The intentional context will be modelled by the Hamiltonian of the system, while the perceiving 

(observability aspect) and the acting (controllability aspect) will be icpresenied by operators with 

special properties being required. The tight relationship between perceiving and acting will be 

revealed as operators that are self-adjoint, that is, the same. 

Assume that perception involves a meter and that action involves an effector, then this self- 

adjointness properly implies that such mechanisms are but different aspects of the same operator. 

Though the idea is not fully developed here, self-adjointness suggests a possible formal 

characterization of the construct of a 'smart perceptual device1+ land of ecological (inner 

product) operator (Runeson, 1977). Here an actor's capacity for acting (an effectivity) and 

metering are unified under the intention to discover some characteristic property (an affordance) of 

the local environment. as in wielding avisually occluded implement to determine its length and its 

suitability for use in some task (Solomon & Turvey, 1988; Turvey, 1989). 

In quantum mechanics one does not have to worry about the specific conditions under which 

the self-adjoinmas (hermiticity property) requirements are satisfied. (Primarily, one is concerned 

with identifying the Hamiltonian of a system). fa quantum mechanics the Hamiltonian is always 
Hermitian. 

Definition." An operator H is called Hermitian, or complex adjoint if 

holds with the property that any f and g converge to zero at infinity. 
Replacing f and g with y i n  eq. (3.6), that is substituting the solution of the Schfidinger 

wave equation into f and g. we get 
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If ysatisfies eq. (3.2)17 then from eq. (3.7) it follows by a substitution 

J J 
(3.8) 

This important result shows that the inner product is time independent for a solution of eq. (3.2). ' 

In the control theoretical framework, the perception-action system was formally modelled by 
dual differential equations expressing the observability-conmllability conditions. In quantum 

mechanics, the control of action is expressed in tenns of the Schrodinger equation of motion. Its 
dual process, the detection of information, is identified in quantum mechanics as measurement- 

This is not unusual, for the perceptual system has been treated as a measurement device before 
(e.g., Rosen. 1978; Bingharn. 1988; Shaw, 1985). What kind of measuring process is perceiving 
and how does it relate to controlling? We discuss these issues next. 

An analogy can be constructed between the influence of a scientist's measurement on the 

motion of an inanimate particle along its trajectory (in the laboratory frame of reference) and the 
influence of information detection on the perceptua1,control of an actor's (self-)motion along its 
goalpath (in the Q-cell frame of reference). This analogy holds but with qualification so that 

measurement of the particle becomes perception by the 'particle' and extrinsic control becomes 

infonned self-conmL Therefore. with cenain requisite modifications, the mathematics of quantum 
meaSarement can be extended to the case of a complex patticle exercising self-control from the case 
of a simple panicle subject to extinsic control. 

In classical quantum mechanics, the measurement process is limited to a short period of time. 
But for perception (and control) within an intentional context (Q-cell) the process is continuous 

between boundary conditions (intent to target at either the a, a, or  Q scale. as shown in Figure 3). 

Measurement ( i d  therefore perceptual) information can be represented in the SchrBdinger equation 

of control The Hamiltonian for the simple particle can be generalized to include a component 

representing the influence of information on the control of motion (Shaw, Kugter, & Kinsella- 

Shaw, 1991). How might this be done? Information can be conceived as a field, and the goal for 

a given task can be modelled as an attractor in the information field (Kugler, Shaw, Viinte, & 

Kinsella-Shaw, 1990). (But see footnote 4 for qualification). As our simple example, consider 
again acharged panicle moving in a magnetic field. (See footnote 14.) In the formulation for this 
problem. an external field can influence the form of the control equation without changing the 
generic form of the S c W n g e r  equation Because of their duality, this suggests that the 

" In quaam mechanics, unlike toe classical adjoin! systems approach, time-reversal cannot be modelled simply by 
Ole adjoint system, rather, as proven by Wigncr (1932). Ilic correct time-reversal transfonnaiion sets TMtJ equal to 
iis complex conjugate so thai T H f )  = y* (-1) rather (ban setting it to the simpler adjoint, TyI r )  = y(-1). 
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infonuation field can be modelled within the quantum mechanical framework in a similar fashion. 
Using the (dual) Sch&iiger wave function to characterize the perceiving-acting cycle as a 

"knowledge wave', contrasts shaiply with the traditional view of it as negative feedback control 

(Smith & Smith, 1987). 
To appreciate the modelling strategy for introducing observability (and hence controllability) 

into quantum mechanics, consider the nature of measurement in quantum mechanics more closely. 

Assume a measuring device M measures a propeny G of a moving particle. Property G is called 

an observable. More soecifically: 

Dejiniiion: An observable is a Hermitian quantum mechanical operator G. 

Definition: The expectation value. < >, of G in the state /is defined by the integral 

Definition: A measurement is the expectation value of an observable G.18 

Practically speaking, the measuring device must complete themeasurement in finite time. One of 

the most interesting aspects is that measurement changes the wave function of the 'otherwise freely 

moving particle' to be measured- Formally, one can show that if the wave function of the 

incoming particle \sf[x). then the measuring equipment modifies the kernel K of the amplitude 

by making it equal to K d x 2 >  12, xi, ti ) in the course of measurement starting at t = t;, x = X I ,  

and ends at t = t2, x = x2. The inner product off and Key that is JKeq/x;, (2,  XI ;  td f tx i ,  t i) 

dx, gives the amplitude to-anive at x2 at the outset of the equipment- 

Using Feynman's notation (Feynman & Hibbs, 1965). the probability function associated with the 

property G will be 

where fo is the wave function to be measured. Kap(x23) is the kernel for the experimental 

apparatus, and XJ is the position arrived at by panicles with property G . This result, however, 

depends on experiment (including the measuring equipment and experimental conditions, such as 

Since G can be measured it must be real, that is G must be a Hermitian (complex conjugate) operator. 

76 
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duration of measurement, etc.). To find the kernel of another experiment, another form, Kq, 
(x3,x) is needed: 

Since the same property G is measured in each experiment, P(G) should be the same for any 

incoming wave function(x) within an unimportant constant phase factor e'1. It follows that 

so that one obtains an experiment-independent form of the kernel. This independent function, 

g(x), is called the charactenstic function of the property G. One can now refer to the quantum 

mechanical analogue of observability used in classical adjoint control system. Notice that the 

integral in eq. (3.13). generally, yields a complex number for the measured amplitude. 

Furthermore, if the measurement is expressed as a G transformation on the incoming wave 

function/, than eq. (3.13) can be written in the simplified fonn 

The integral will be real if the G operator of the observable is Hennitian. (Compare this result 
with the required positive definiteness for M in eq. 29). This provides the basis for requiring G to 

be Hennitian operator 

Knowing the limitation of measurement in quantum mechanics due to the uncettainty principle, 
one should not expect a definition of complete observability. Nevertheless, a more general 

defition, called maximalobservability, can be formulated. This suggests that there may only be 

an approximate generalization of the Kalrnan Duality theorem to quantum mechanics. We are not 

yet clear whether there is a mini-max duality between eqs. (3.16) and (3.16a) as there is in the 

classical adjoint systems case (Section 22). This possibility should be ascertained. 

Definition: G property is maximally observable in a quantum mechanical measuring system if G 
is Hermitian and 

P<G) = /fix)* Of(x) dx -> max (3.16) 

Here G must be a close approximation to the generalized Hamiltonian of the system defined 
over the Q-cell. Having the intrinsic adjoinmess of the quantum mechanical equations and the 

equations of a measuring system. the corresponding definitions for controllability may also be 
formulated. This can be done by the appropriate variational principle. In quantum mechanics the 

variational principle is called the Rayleigh-Ritz method. It states that if H is the Hamiltonian of the 

system with Ey as the lowest energy state value, then for any f the following condition holds. 
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This f- is not really helpful for our purpose. The fundamental problem faced is that here 

one wants to split the Hamiltonian into an informing and a controlling pan.19 In other words, here 

one must pay the price for the simplicity of the quantum mechanics as compared to the classical 

approach, where the control and information pans were given in separate equations. Imagine, for 
example that we need to provide a field to conuol the path of a panicle. Then the controllability can 

be defined on the basis of the Hamiltonian, which includes the 'control field'. Unfortunately, the 

measurement (observation) will change the Hamiltonian of the system. Consequently, it is not 

possible to isolate the control pan of the new Hamiltonian. There is a land of tautological limit on 

what one can do to separate control from information in the quantum case. One can take a control 

perspective or an information perspective on the actor's generalized Hamiltonian but there is but 

one quantity. Hence these control and information seem quite tauto1ogic.L To get around the 

tautological nature of the control versus the measurement problem, it seems to us that one can do 

no better that to consult Feynrnan & Hibbs' (1965) discussion of the issue. In their discussion, 

this tautological nature of information and control is simply a strange property of the 

characteristic function 

They initiate the discussion with the following question: What is the relationship between f and 

g? Before answering this question, one must ask: What should the state function f be to have the 

property G? To find a particular state function, F, for a given experimental apparatus i with a 

given characteristic function g . one has to solve 

This equation has the well-known solution pay, (xi,x) for F(x). Here K * ~  ( x ~ )  is the 

complex conjugate of Kq (xi,x). Consequently. 

That is, g(x) gives us the wave function of a particle having the property G with probability 1. 

Furthermore, if the panicle is in siatejx) the amplitude that it can be found in a state gfx) is 

l9  Here one might expect (be duality propoty (under a Greens function) of the time-forwan1 Fern propagator 
and the time-backward Dysa~ propagator. might be useful ways 10 represent controlling and informing, respectively. 
Unfortunately, the problem is more complex than mis, f a  one must have coupling of iafonnadm and control over 
internal and external frames of reference. Roall (be quote io Scctioo 1 from Shaw & Kinsclla-Shaw (1988). These 
issues, however, have been touched upon algebraically (out not explored analytically) io Sbaw, Kugla. & KinseUa- 
S t o w  (1991). 
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Having outlined the major point of Feynman & Hibbs' discussion (1965. pp. 96-108). they 

conclude: 

"We might say loosely: The probability that the particle is in the state g(x) is lg(x)flx)dx p. 
This is all right if we know what we mean. The system is in the stateflx), so it is not in 

g(xj; but if a measurement is made to ask if it is also in g(x), the answer will be affirmative 

with probability 

PfG) = \fg*<x) fix) a!! ft = p[g(x)l (3.21) 

A measurement which asks: Is the state g(x)? will always have the answer yes if the 

function actually is g(x). For all other wave functions, repetition of experiment will result in 

yes some fraction P (between 0 and 1) of the tries. This is a central result for the 

probabilistic interpretation of the theory of quantum mechanics. 

For all this we deduce an interesting inverse relationship between a wave function and 

its complex conjugate. In accordance with the interpretation . . . [see eq. 3.201. g*(x) is 

the amplitude that if a system is in position x, then it has the property G. [Such a statement 
is put mathematically by substituting a 5 function for fix) [see eq. 3.201. On the other hand, 

gfx) is the amplitude that if the system has the property G, it is in position x. C I X S  is just a 
way of giving the definition of a wave function.) One function gives the amplitude for If 

B ,  then A. The other function gives the amplitude for If A, then B. The inversion is 

accomplished simply by taking the complex conjugate. Equation [3.21] can be interpreted 

as follows: The amplitude that a system has the property G is (1) the amplitude fo that it is 
at x times (2) the amplitude g*(xJ that if it is at x, it has property G, with this product 

summed over the alternatives x." (Feynman & Hibbs. 1965; pp. 108-109. Numbering on 

equations refer to equations in the current paper.) 

The gist of this section can be interpreted as the quantum version of what Gibson called a rule 

for the perceptual control of action (1979). For the measuring process (detection of goal-specific 

information) to be successful fin controlling action), the g characteristic function (affordance goal 

property) of the environment has to be a complex conjugate of the state function f (the effectivity 

property) of the actor. The measurement procedure specifies a characteristic function (goal-specific 

information) which will be a real extrinsic constraint. For the measuring process to be successful, 

the free particle should modify its state function as a result of measurement More specif~cally, in 

order to have a good measurement (high probability) the self-adjointness (or complex conjugacy) 

of the characteristic function and the state function of the moving particle should be properly set 
up. The calibration includes the boundary conditions (the Q-cell) within which the device executes 
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In the quantum mechanical example of a moving charged panicle in the magnetic field, the 

focus was on the measurement problem. Actually, both the action of the pardcle and the measuring 

process are equally important, even though the role of action is essentially implicit in the 

discussion. (This is in keeping with Gibson's being a perceptual psychologist who was at heart an 

action psychologist.) This is the natural consequence of the fact that the particle is n& an 
intentional system which can set its own goal parameters. In the case of a living organism the 

focus should be on the goal-directed action which is guided by perception. That is, the focus 

should be on the intentionally selected goal specifii action guided by perception. 

For an organism moving toward an intended goal, and perceiving (measuring) its state relative 
to the goal (which is given by the characteristic function), the task is to move so as to maintain its 

self-adjointness. This self-adjointness is achieved by the actor observing a rule for the perceptual 

control of action; namely, in the language of quantum theory: Move so that the wave function of 

motion is the complex conjugate of the characteristic function given by the perceptual 

measurement!'; and, in the language of intentional dynamics: Move so as to perceive what you 

need to perceive if you want to satisfy your intention of maintaining your goal (that is, completing 

your intentional task)!' (See Section 3.5 for further discussion). 

In the above discussion, intentional dynamics assumes that the property G is an approximation 
of the generalized Hamiltonian that must be defined over the whole Q-cell. This compact 

theoretical formulation may be both too brief and too ambitious. For it requires perfect knowledge 

of all the observables with regard to the given Hamiltonkin-something usually not known 
explicitly. Nevertheless, it seems clear that a quantum theoretical framework for intentional 

dynamics may be in the offing. Final judgment should be suspended until empirical examples have 
been thoroughly worked out. (Note: There are other observables defined with respect to the Q-cell 

of intentional dynamics, and additional conditions from quantum mechanics to be satisfied. These 

are discussed in the Appendix B). 
To complete the parallel presentation of the quantum approach to the classical case (Section 2). 

the integral equations of quantum mechanics formulated by Feynman must be introduced. We do 

so in the next section- 

3.4 Feynman Path Integral Approach 

The equivalence of the Feynman path integral formulation and the conventional presentation 

of quantum mechanics by the Schrodinger differential equations is discussed in several books. 

The translation between the two languages can easily be found in the literature. For instance, the 

detailed analysis of the transition from the path integral to the Schrfid"mga differential equation can 

be found in Feynman's book (Feynman & Hibbs, 1965). The most common way to do the . 

translation is to differentiate the equation of the path integral so as to derive the Schfidinger its measurement. 
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equations. Obviously, the derivation is invenible. The inverse direction of translation can also be 

done by simply reversing the derivation steps. However, here we present the translation from the 

differential approach to the path integral approach for two reasons: 

First, because certain important aspects of the path integral formulation help us understand 

more about the usefulness of the quantum mechanical technique in intentional dynamics. Second. 

because it is important to show the role of Green's function and its generalization for the quantum 

mechanics. Partly. because the self-adjoint formulation in control theoretical framework (Shaw, 

Kadar, Sim, & Repperger, 1992) naturally offered the Green's function as a candidate to 

understand formally, and perhaps also empirically/physically the underlying deeper processes. 
Following the same steps of the above construction of integral equations as inverse ones to the 

differential equations. the derivation begins with writing the Schrodmger equation. Next. one 

must find the corresponding Green's function that will be the kernel of the integral equation 
associated with the Schrodinger equation. Finally, it must be shown how one can obtain the 
Feymnan path integral formulation from the Greens function. 

For the SchrWiger equation, the generic form of the associated integral equation win be 

This equation provides the standard way to show the equivalence of the differential and the path 

integral approaches. By simple differentiation in time, it yields the Schrodiger equation (Again, 
to keep the presentation simple, we suppress the dual version of these equations). 20 

We need to point out that the differential operator of the SchrOdinger equation is defined on the 

wave functions as their solutions. As mentioned earlier, the Schrodiger differential domain of the 

operator the domain and range of the operator consists only of wave functions. Consequently. the 

inverse operator can be written in the form eq. (3.22) with the boundary condition 

The Green's function of the SchrBdiger equation will be the kernel of the integral eq. (3.22) as it 

can easily be seen by comparing eq. (2.21) with eq. (3.22). The Green's function represents a 

local (infinitesimal) influence resulting in displacement. The kernel K(x& t3; xj. ti) of the 
SchrOdinger equation can be given explicitly as 

20 The original, time forward equation is given by cq. 3.31. The dual equation then is yfx;, 11) = Jm. tl.: X2. 
1;) Ã§<Q 12) & The dual kernel to cq. 3.33 (antipropagator) is 

e(i l l - )s[x~ X I .  ' 1 1  Ddt) AS a shon haixl for both the original and the dual equations, 
1 

one might replace Hie usual path distribution functional. Ddr) with Dx[I] meaning that the distributi~o is 
temporally bidirectional, i. e.. is bolt Dd+f)  or Dd-I). 

Eq. (3.24) is Feynman's path integral representing integration over all the possible paths 

between (x2 ti,) and(xj ,  tj ). (Again, consult footnote 19). The kernel is also called the 

umpfitude with respect w its endpoints. figure 5 illustrates the way in which a classical (stationary 

action) path can be obtained from the distribution, Dx[tJ, by constructive and destructive wave 
interference. Traditionally, the divisor in the exponential term, 61 = h. This shows that the width 

of the uncertainty region around the classical path has the width of Planck's constant, h For 
generality, however, (explained below), this constant is replaced with a variable fit. Since this is 

key to understanding the origins of the 'knowledge wave'. let's consider this process in more 

detail. 

(Insert Figure 5: Emergence of the 'Knowledge Wave' wit/un the 0-cell) 

We ask: How does a particle (or an actor) get from an initial point (intent) to a final (target) 

point? In the classical approach, although the principle of least action picks out the path, it is not 

clear how the particle is constrained to that path. Also, in conventional formulations of quantum 

mechanics, no definite path is possible because of uncertainty. Hence the path concept is deemed 

useless. Feynman's insight was to appreciate the positive import of this problem; namely, if a 
unique path is not possible, then allpossiblepaths are allowed! Furthermore, he showed how the 

classical path could be recaptured: Weight each path by the factor e'5̂ including the classical path. 

Feynman then showed that each path is more or less in dynamical phase with the other possible 

paths. Thus they each contribute to the sum of amplitudes which is greatest in the vicinity where 

the classical path is to be found by variational techniques. More particularly, the classical path is 

d i g u i s h e d  by making the action, S, stationary under small changes of path: thus close to this 
path the amplitudes tend to add up constructively, while far from it their phase factors tend to 

cancel because of destructive wave interference. The path integral approach essentially gives a 

'global" formulation to classical Held theory, and for our purposes, to intentional dynamics. 

To enrich the intuition on the meaning of the path integral, consider how it may be extended to 
a concatenation of path distributions (e.g., a sequence of wells): 

Amplitudes for events occurring in succession can be expressed in the form 

where the integration means summing over all xc tc points, that is the total amplitude to go from 

(XJ, t j  ) to (x2, t2) is the sum of the product K(xi,  12,; xe. tc) K(xo to; X I ,  t i )  taken for all 
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mssible (.re tc) The concatenated Q-cell partitions, shown Figures 2 and 3, provide cases where 

the 'chain' rule of kernel products applies. It is important to recognize that the Feynman path 

integral is defined from initial (or final) point to a moving current point, which acts as a parameter 

that distributes action (5) over the paths moment to moment. Thus, the partitions depicted in 
Figures 2 and 3 arise dynamically as a function of the perceiving-acting cycle branching at different 
choice-points while leaving the overall intention (Q-cell) invariant (For example. consider a 

predator who must change direction in order to continue tracking a dodging prey.). 

(Insert: Figure 6: Showing the Range of Scales for the Weighting Function in the Feynman Path 
In~tgraL) 

In the weighting function. ap (~S/CO)  (eq. 3.24), over the Feynman distribution, Ddt), or 

Dd-0. the scale used in physics is 0 = h (Planck's constant). This weighting function can be 

generalized to ecophysics and applied to intentional dynamics. By replacing h with a variable 
scaling factor corresponding to a or (a, where h Sa S as< Q, one can have graded partitions of 

uncertainty (tolerance) around the classical stationary path. The existence of a variable scaling 

factor expresses mathematically Kugler & Turvey's (1987) claim the that action system can be 

variably quantized. Also, the total action (5) associated with these path partitions can be expressed 

as a product of kernels of the Feynman path integral as defined by eq. (3.25). 

3.5 The Analogy Between Ecological Laws and Quantum Mechanical Laws 
Classical mechanical laws apply to predict events: Given the appropriate initial conditions (Le., 

the mass and layout of three balls A, B, and 0 so that if event, occurs (e.g., ball A strikes ball B), 
then event2 (i.e., ball B strikes ball C) necessarily (lawfully) follows. Traditionally. psychological 

laws have been assumed to take the same causal fonn: Given the appropriate initial conditions (~e, 

normal organism with proper learning history, attending to stimulus, and so forth), then if event1 

occurs (a stimulus event), then event2 (a certain response) probably (lawfully) follows. Here, as 

Skinner (1977) suggests, the stimulus, although not truly a force, acts like a force. and the control 

law' (next state function), although not truly a law, acts like a law to move the organism into its 
next state from which it emits the observed behavior. If the state transition is associative, then this 

form of law fits a stimulus-response behaviorism; however, if the state transition involves a 
representation, or symbol, then this fonn of law fits cognitive psychology (Fodor & Pylysh~n, 

1988). This classical law form, however, fits neither quantum phenomena nor ecological 

psychology phenomena (e-g., intentional dynamics); rather, they both take a different law form. 
It is generally agreed that quantum mechanical laws d o  not predict events with absolute 

certainty, as determiinistic classical laws are supposed to; rather they predict only the probability 
that subsequent observations (measurements) will follow from previous observations 
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(measurements) if, as discussed earlier, a certain self-adjoint (complex conjugate) relationship 

holds between a state function and ch=mxi.stic properties of the situation (Wigner, 1970). As 

indicated, ecological psychology require laws that operate similarly. 

Consider a role for the perceptual control of action (Gibson, 1979), say, as formulated from 
the perspective of a prey engaged in a prey-predator competition. If you (the prey) intend to 

escape the predator, whose image is  expanding in your optic array, then intend to move so as to 

make the predator's image contract!' Here, analogous to the quantum law formulation, the law 

relates a previous observation (information) to a subsequent observation. The quantum mechanical 
interpretation of intentional dynamics gives the following generic reformulation of a rule for action: 
"If you (the actor) intend following one of the acceptable goalpaths (~e., in a congenial Q-cell 
distribution) having intended characteristic property g' (positive affordance value), then stop 
applying the old state function. f (an inappropriate effectivity), which generates unacceptable paths 
(i.e., in a uncongenial ii-cell distribution) having the unintended characteristic propeny, g 

(negative affordance value), and begin applying a new state function. f '(an appropriate 
effectivity)!' 

(insert Table 111: A Comparison of Law Forms) 

Table III compares the different laws discussed. Both forms of the classical law form (I and 
II) relate event to event, while the quantum-type law form (SQ and IV) relate information to 
information through a function that is the complex conjugate of the characteristic propeny of that 
information. In the quantum case, a state function does so, while in the intentional dynamics case, 

a path function (an effectivity) does so. 

4.0 Conclusion 

In the adjoint information/control theory (Shaw, Kadar, Sim, & Repperger. 1992). perception 

was formally construed as observability and the action as controllability (Kalman, Englar, & Bucy, 

1962). This traditional law approach treats control systems as an analytic extension of classical 

mechanics, fornulaled in tenns of ordinary differenlial equations. or. alternatively, as an extension 

of variational mecfaanics. formulated in terms of functional (Volterra) integrals. It was argued that 

although these mathematics are quite appropriate, up to a point, they have certain inherent 

limitations for modelling perceiving-acting systems which exhibit intentional dynamics (e.g., 

prospective control). The self-adjointness property is a merit of this traditional approach, but alone 

it is not sufficient. Rather the classical variational approach to defining the goalpath of the 

perceiving-acting cycle has inherent shortcomings because of the mathematical physics it inherits 

from classical mechanics. These three shortcomings are most prominent: 

(1) it does not give an account for how a 'particle' selects a stationary path; 
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(2) it does not provide a principled way to handle the tolerance limits on detection and control 

in following a path; and 
(3) it provides no way to embed the perceivbg-acting cycle in an intentional context 

Self-adjoinmess is a natural property of Hilben space and so is inherited by quantum 

mechanics. Hence. it was argued that the perceiving and acting in intentional contexts might have a 

natural description in quantum mechanics so that these three shortcomings arc overcome. 

To the above complaints we gave the following remedies: 

(I)* The Feynman path integral provides a physical motivation for the claim that the path that a 

'particle' elects necessarily emerges very close to the classical (stationary action) path. 

Figure 5 shows that the quantum action distribution is constant to the first order in the 

vicinity of the classical path (dark strip given by constructive wave interference), while 

outside this region the dynamical phase oscillates so erratically that the conespondimg 

amplitudes of the other possible paths are washed out (by destnictive wave interfe~ence).~~ 

(2)* The tolerance limits around the path represents the fallibility of control of i n f o d o n  

detection by intentional 'particles' and Planck's constant range of Heisenbcrg uncertainty 

around the path of inanimate particles (Figure 5). The tolerance range for 'particles' 
exhibiting intentional dynamics is variable, depending on the nature of the task, the degree of 

certainty of the intention held, scale of information and control resolution, and the number of 
interpolated choice-points. Regardless of these details, however, the weighting function in 
the kernel, e'^~(where (a ranges from h taO} which propagates the path, unites intentional 

dynamics with quantum physics vis a vis the Feynman path integral and provides access to 

the Schodiiger wave function-the 'knowledge wave' in the case of particles exhibiting 

intentional dynamics. An important goal of ecological physics has been to provide a 

continuous link between psychology and physics (Shaw & Kinsella-Shaw, 1988). This link 
is now forged by this variable weighting factor, m, for it shows how psychology, through 

intentional dynamics, can be continuous with physics when a constant scale factor is allowed 
to become a variable one. 

(3)* The perceiving-acting cycle becomes situated in an intentional context when it is embedded 
in an Q-celL Here not only is generalized action conserved under successful goal-directed 

behaviors but intention acts as a kind of implicit 'steering function' (prospective control) so 

2 t ~ k m h ~ @ k & ~ ~ t t o ~ n ~ d y ~ ~ k ~ ~ f ~ ~ ~ ~ d ~ ~  
having complex exponentials, oscillate rapidly (i-c, they have a negative definite metric). TO allow for numerical 
Ã§WÃˆX)ximation a bridge from qwumm mechanics to statistical mechanics can be built by rotating Umc t into an 
"na&nay direoion by ihe operation (a Wide rotaiioo) I->iz This has the effect of dampening the wildly 
""dilating exponential, and turning it into an exponentially decreasing function, darn, which behaves mole 

classical weighting fundon!, (ie.. with a positive delime metric). Multiplying through by -it am 
hohanorphically to counter- the solutions to this palfa integral back onto the original metric (Aitchison & Hey, 
1989). 
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that the actor (who is well-intentioned) can ride the crest of a dual (information and control) 

'knowledge wave'. The symmetric kernel of the dual Feynman path integral, as defined over 

Dx[t], is called apropagator because it genera? all the knowledge (remembered history and 

anticipated future) that may exist for a 'particle' (actor). Consequently, it is the core equation 

for intentional dynamics as it is for quantum physics and provides the attractor dynamics . 
needed to explain goal-directed behavior. 

Perhaps, the chief failure of classical physics, and inherited by the classical adjoint control 
theory is to make room for goalpaths that are possible but not pursued. In the classical approach, 

the only path which exists is the path actually followed by a particle. in accordance with the-, 

principle of least action For intentional systems, where choice behavior must be real, paths 

intended but not followed must be as real as paths that nature defines by least action. This 

requirement of intentional dynamics, like that of quantum mechanics, calls for a dramatic change in 

scientific philosophy. 

Like quantum mechanics, intentional dynamics, needs a physics ofpossibilism and not just of 

actualism (Turvey. 1992). Fortuitously. where classical physics does not allow for such 

possibilism to underwrite choice behavior. the newer view of quantum physics based on the 

Feynrnan path integral does. The implications for the philosophy of psychology are immense. 

Under the classical approach to perceiving and acting in intentional contexts, one had to posit 

nonobservable constructs, such as unconscious inference, magically acquired memories or 

cognitive maps. and so forth, to underwrite the choice set from which actual choice-behaviors 

emerge. 

By contrast, from an ecologized version of the Feynman path integral. a field of information 

and control, is shown to emerge. By differentiating this integral, a Schadinger-like 'knowledge 
wave' a r k s  to isestoinate the actor's goalpath choices-a goalpath distribution whose width is 

automatically scaled to the abilities of the actor by an intrinsic weighting function. If so. then the 

intentional control of the focus of attention, by which the actor finds its way, is explained. 

In summary, our aim in this paper was to show that measurement in quantum mechanics could 
be extended to the Q-cell to model the perceiving-acting cycle in an intentional context and to show 

that the existence of the so-called 'knowledge wave' is by no means fanciful- We have provided 

arguments in favor of both of these claims. How does this approach relate to other attempts to use 

quantum mechanics in psychology? 

If, as we suspect, the internal mechanisms for perception, action, and cognition (e.g., 
intentional focusing of attention) under the auspices of this approach are to be replaced by 
ecological operators on a quantum-like field theory, one must wonder if any help from 

neurodynamics for such mechanisms is in the offing. Apparently so. 
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It is worth noting in this regard that variations on quantum mechanics have been used to 

model figural processing (Pribram, 1991). as well as audition (Gabor, 1946), at two distinct 

constituent scales in the analysis of brain processes: the macroscale of information processing in 

the brain and at the nanobiological scale'of the microtubular processes of the cortex (Hammeroff, 

1987). At the more macro scale, the neurodynamics that support visual and auditory perception 

have been framed in terms borrowed from quantum microphysics. More specifically, the activity 

at the level of the dendritic microprocesses has been modelled as a quantum field, where Priiram 

has hypothesized quantum or patch holographical processes to occur and 'signals' are ". . . better 

conceived of as Gabor-like elementary filnUioos~quanta rather than bits of i n f i o n '  

(Pribram, 1991, p.271). Where the above approach represents an extrapolation from quantum 

microphysics to neurodynamics, our efforts represent an attempt to develop a quantum 

macrophysics appropriate to intentional dynamics at the ecological scale. Where brains provide 

the boundary conditions for the former approach, the Q- cell does for the latter (see Shaw, 

Kin.?&-Shaw, & Kadar, in preparation). 

We have surveyed the promise of the quantum mechanical approach to modelling the 

perceiving-acting cycle in an intentional context and found many ways that these mathematics 

might be appropriate. We have also discovered problems that must be overcome if the complex 

nature of the interaction of information and control is to be understood. Obviously, much further 

work is required. 
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Appendix A: Constructing Green's Functions 

There are several difficulties in constructing a Greens function for a given differential 

equation. First of all, the inverse does not necessarily exist. This shortcoming can be redeemed in 

many cases by some iransformation. Even if the inverse exists, its construction is usually more 

difficult than finding solutions by using a properly chosen conventional trick. However, if the 

inverse exists, then the problem is equivalent to the task of finding or constructing the kernel. the 

Green's function of the integral equation (See e-g. G(x, t) in eq. [2.14]). There is more than one 

way to construct the Green's (unction associated with a differential equation Each method may 

have corresponding physical meaning. Here we presented the one which is the easiest and the 

most revealing in terms of using the adjoinmess we have already introduced in our paper. Here we 
just further refine the basic concepts. 

Definition: L* differential operator is formally aajoint to L if L and L* are associated with the 

following equation 

Definition: L is formally self-adjoint if L = L*. 

Definition: L* differential operator is adjoins to L if the associated differential equations of L has 
homogeneous boundary conditions. that if the eq. (A.l) takes the simple form 

or using the inner-product notation 

eq. (A.2) takes the form 

(481 = V. L*S). (A.4) 

The key step to achieve the adjointness is to recognize the importance of elimination of the 

boundary terms in eq. (A.1). The very same idea leads us to the Green's function (Greenberg, 

1971; pp. 22-26). If we find a G function for a given g, for which 

LYG)  = a x ' - X J  (A.5) 

G f o , x J = G x ; b J = O  (A.6) 
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To illustrate the meaning of this seemingly pure formal trick we can imagine an arbitrary physical 

problem associated with a differential equation, e.g. eq. (2.12). where g(x) is a forcing tenn oh 

the otherwise autonomous system. represented by the homogeneous L[y ]= 0 equation. We can 

realize that 
G(xe,x) *g(x')&' (A.8) 
represents a local concentrated influence of the forcing term. Consequently, the right hand side, 

the integral part, of eq. (2.21) represents the superposition of the localized/quantized influences. 

That is why the Green's function is often called the influence function. 

Appendix B: Minimal Requirements f o r  Quantum Mechanical Observables 

Having now provided a generic quantum theoretical framework, two questions naturally 

emerge: 
a) How can an observable be conserved (LC, be a dynarnical invariant)? 

b) How can a conserved quantity be found? 
To provide the fundamental ideas for answering the first question, a simplifying assumption is 

needed. Assume a time independent Hamiltonian H. Let F be an observable in the stale y. If its 

value, cF> conserved, that is constant, then its lime derivative 

should be equal to zero. Using the complex conjugate Schrodinger equation 

eq. (Al) takes the form 

Shaw. Kadar, & Kinsella-Shaw 
Intentional Dynamics 

The integral is vanishing if and only if the commutator of H and F, HF-FH = [H, F], is vanishing, 

* that is 

The vanishing of  the commutator was trivially true for the case when for the observable operator F 

was the complex conjugate of the Hamiltonian, F = H*. The vanishing of the commutator 

obviously provides us a less strict requirement for the observable, but it still requires the full 

knowledge of H. 
Regarding the second question concerning the discovery of conserved quantities, one can 

further weaken the required conditions as follows: 

The solution for the second issue is implicit in the first problem. Namely, if we have an 
operator U which commutes with H and is invertible. then 

If Uis time independent then eq. (B.5) shows that U is a symmetry operator of the Schri5dinger 
equation. 

Definition: U is a symmetry operation of a differential operator L if for any lysolution of L Uwis 

also a solution of L. 

For the Schrodinger equation if U is a symmetry operator and yis a solution then 

For U is not time dependent, 

ih-- dly = u-IHU~. 
dt (B.7) 

There is, however. an additional physical requirement for the U transformation. In our conceptual 

framework this means that the inner product invariance postulate is an intrinsic requirement for 

quantum mechanics. The U fransformation is admissible if the normalization of the wave function 

is not changing with the application of U, that is if 

-- - 

* If Hand G ~ u i e  then we can choose the eigcnfuoctions (hat they will be common cigenfuoaions of H and G 
Hy= Ey 
F<r=fv- 



1 c = speed of light 
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v,ydx= (Vy)*U,yA = V*UtUydx. \ l' (B.8) 

It follows that VrV = UU' = I- - meaning U has to be a unitary transformation- Cleariy, the 

unitary transformations and also the antiunitary (see the time reversal transformation below) 
transformation play important role in our theoretical analysis due to the inner product invariance 

postulate.23 
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A Minkowski Light Cone 
Figure I :  A Minkowski Light Cone. An unbounded worldline passes through an origin. 

Imagine all possible worldlines converging on the origin from the past that might be occupied 

by an actor. These are all the events that the actor might have perceived as well as all the past 
events that might have causally affected him. Also, imagine all the worldlines diverging from 

the origin toward the future. These are all (he possible events (hat may originate from the 

actor-actions or infonnation-fo affect future events. 

23 The complex rotation U= eieFprovides us an interesting connection between the certain unitary and Henmuan 
transformations. TiK operator F is called the generator of U and i~ is the observable connected to U if U is not 
~cnnitiac. H. Wqt  (The Ihcary o f  groups and quantum mechanics. Dove, New York. 1950, pp. 100.214) considered 
(his land of d o n  &Onnation". wtuk investigating die electric charge cQ >, as a conserved quantity. Tbis type 
of transformations are called gauge-transfamation of ide first kind. Gauge invanatice, in quamum mechanics, means 
t'iax the gauge transformation of a solution would be another solution of Ihe Schrfdinga equation. 
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Y Q-cell with a-cell and a-cell 
A Partitions 

object rotating through one 720Â Q-period, or 

representing a goalpath is bounded by the point of intent and the target point. In between these 
endpoints are other points, called choice-points, at which sub-goals for subordinate actions are 
determined. The four ballistic half-turns of the tunitable are represented as the points parsing 
the sinusoidal curve generated over space-time by the rotation event. (The accelerations and 

decelerations are not depicted). 

inten 
poin 

Figure 3: A Schematic Q-cell Showing its Nested Pam~tions. 

-t repellor 

intent: \ : target 
point? inner product invariant / ?point 

Schematic Representation of Temporal Self-adjointness of  
Information and Control over Goalpath 
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Figure 4: Temporal Self-adjoinmess of the Info-on and Control, The dual paths denote the 

complementary conjugate values of information and control at each point along a goalpath 

traversed by a perceiving-acting System. There exists an inner-product invariant so that the 

generalized action quantity (defined as the inverse flow of information and control) is 

conserved. As one quantity increases, the other decreases, so that the bi-temporal 
integrals always sum to yield the same total amount of generalized action over a given g o d p a  

If the path is not a goalpath. then this quantity will not be conserved. 

Organism Perspective Environment Perspective 
(Action) (Perception) 

Energy (control)(+t) 

Jo 
Equation I 

Jo 
Equation II 

Information (detection)(-t) 

x*(t) = k ~ * d )  + (s. Y*(s) ds y*(t) = k x*(t) + f ICE (s, t) x*(s) ds 
J o J o  

Equation III Equation IV 
Table I: The Integral Equations Representing the Perceiving-acting cycle. This system of adjoint 

equations are the solutions to fhe differential equations discussed in Section 2 (See Shaw & Alley, 

1985, for discussion). 




