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Abstract

It is known that predictions about individuals from statistical data about
the population are in general unreliable. However, the size of the problem
is not always realised. For a number of ways of predicting information
about one variable from another with which it is correlated, we compute
the reliability of such predictions.

For the bivariate normal distribution, we demonstrate that unless the
correlation is at least 0.99, not even the sign of a variable can be predicted
with 95% reliability in an individual case. The other prediction methods
we consider do no better. We do not expect our results to be substantially
different for other distributions or statistical analyses.

Correlations as high as 0.99 are almost unheard of in areas where corre-
lations are routinely calculated. Where reliable prediction of one variable
from another is required, measurement of correlations is irrelevant, except
to show when it cannot be done.
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An empirical study of correlations reported in the sociological literature (McPhail 1971)
found that only 1% of the correlations reported in the papers studied were over 0.4,
and only two out of 281 correlations exceeded 0.6. In that area, a correlation of 0.8
is generally considered high, and a correlation of 0.2 is publishable as demonstrating a
connection between two variables.

We consider the question of what such correlations imply for the task of reliably
and/or accurately predicting the value of one variable from the other. We demonstrate
that it is impossible to reliably estimate even the sign of the variable relative to its mean
unless the correlation is at least 0.99. For lesser correlations, such a prediction will do
better than chance on average, and for some purposes, this is all that is required. How-
ever, such correlations are useless for making reliable predictions in individual cases.
Correlations of this level are virtually unheard of in almost every discipline where sta-
tistical methods are commonly employed.

Despite this, a frequent use of statistical trends is to make predictions about indi-
viduals. Aptitude tests and credit rating are two major applications, especially in the
latter case if ratings are derived from rules generated from statistical analysis by data
mining applications. An individual to whom such tests are applied is, in effect, partici-
pating in a lottery. If the test is valid, the lottery is biased to a greater or lesser extent
in his favour, but it is a lottery nonetheless. Such tests say little about any individual
being tested. Just how little, it is the purpose of this paper to demonstrate.

We are not suggesting an alternative to such assessment methods, or suggesting that
they not be used. We are demonstrating what they can and cannot do.

We use the bivariate normal distribution as a case study, consider several different
methods of gaining information about one variable from the other, and in each case
calculate the reliability of the predictions given the correlation coefficient. We briefly
consider the problems of multivariate analysis and estimation of unknown correlations.

We do not expect our conclusions to differ substantially for other distributions
or statistical analyses. Only standard mathematical statistical theory is required.
See (Kendall, Stuart, and Ord 1987) as a general reference.

The bivariate normal distribution

We recall for reference some basic properties of the bivariate normal distribution. This
distribution over two random but correlated real variables X and Y whose means are
both 0 has the probability density function:

P (x, y, a, b, c) =
1

2abc′π
exp(−1

2
(
x2

a2
+

y2

b2
− 2cxy

ab
))

where −1 < c < 1 and c′ = 1/
√

1 − c2. a is the standard deviation of X , given that
Y = y. (This is independent of y.) We shall call this the conditional standard deviation
of X . b is similarly the standard deviation of Y , given a fixed value X = x. c is the
product-moment correlation coefficient of X and Y .

The conditional distribution of X , given that the value of Y is y, is a normal distri-
bution with mean acy/b and standard deviation a.

If Y is unknown, the distribution of X is a normal distribution with mean 0 and stan-
dard deviation ac′. We term ac′ the unconditional standard deviation of X . Similarly,
bc′ is the unconditional standard deviation of Y .

To visualise P (x, y, a, b, c), it is helpful to look at its contour lines. These are the
family of ellipses x2

a2 + y2

b2 − 2cxy
ab = constant. Since a and b are just scaling factors, we

take them to be 1. The axes of the ellipses are the lines x = ±y, and they intersect
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the coordinate axes at ±k for any k. When c = 0 they are circles, and for positive
c they are elongated along the line x = y. The ratio of the axes is

√
1+c
1−c . Figure 1

illustrates this for selected values of c. This gives an immediate feel for how useful a
correlation is for estimating Y , given the value of X . A scatterplot of data drawn from
these distributions will have roughly the shape of the ellipses. Figure 2 shows such plots
for 100 random points chosen from the same distributions.

A correlation of 0.99 is about the point at which the data begin to resemble a
straight line rather than a cloud. The slanting line in each figure is the regression
line of Y against X . It passes through the origin and the points where the ellipse has a
vertical tangent. Its gradient is c. This line represents the maximum likelihood estimate
of Y , given X . Notice that it differs from the maximum likelihood estimate of X , given
Y , which is a line through the origin of gradient 1/c, meeting the ellipse at its horizontal
tangents.

We will also use the probability distribution function of the (univariate) normal
distribution, Φ(x) = 1√

2π

∫ x

−∞ e−x2/2dx. This is the distribution function for mean 0
and standard deviation 1; for the general case of mean µ and standard deviation σ we
define Φµ,σ(x) = Φ((x − µ)/σ).

As the values we require of Φ(x) sometimes go far beyond the range of standard
statistical tables, we have calculated them ourselves from formulae 7.1.26 (for small |x|)
and 7.1.13 (for large |x|) from (Abramowitz and Stegun 1964), for the related error
function erf(x) = 2√

π

∫ x

0
e−x2

dx.

Analysis of variance

The function f for which the line y = f(x) best fits the probability distribution, in the
sense of minimising the expected squared error, is the straight line y = cx which was
plotted in Figure 1. The proportion of the variation of Y which is “explained” by this
estimate (in the technical sense which the theory of analysis of variance assigns to this
word) is c2. The remaining, “unexplained” proportion is 1 − c2. The latter quantity
is called the coefficient of alienation or dissociation, or more colloquially the coefficient
of uselessness. The second and third columns of Table 1 tabulate these quantities for
various values of c.

Note that correlation does not imply causality. It does not follow merely from an
analysis of variance of this sort that either variable has any causal influence on the
other.

Improvement ratios

A further feeling for what the correlation coefficient means can be gained by considering
the ratio of the standard deviation of Y to the standard deviation of Y given X , when the
correlation is c. This ratio is c′ (independent of X , a, and b). Call this the improvement
of our knowledge of Y . This is a real number greater than or equal to 1. 1 means
no improvement, 10 means that knowing X reduces the standard deviation of Y by a
factor of 10, etc. The fourth column of Table 1 shows the improvement ratio for various
correlations.

Mutual information

For two jointly distributed random variables X and Y , the mutual information between
X and Y is the maximum amount of information about either variable which can be
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obtained from knowing the exact value of the other. It is denoted by IX|Y and is
measured in bits. For a joint normal distribution with correlation c, IX|Y = lg c′. (lg is
the binary logarithm.) This is tabulated in the fifth column of Table 1.

It is illuminating to consider some examples. Suppose we require that knowing the
value of Y should give 1 bit of information about X . Then lg c′ must be 1, which implies
c = 0.866. Suppose we require to predict Y to within 1 part in N . Then IX|Y = lg N ,
and c =

√
1 − 1/N2. If N is at least 5, then this is well estimated by 1 − 1/2N2.

Taking N = 10 — one decimal digit of accuracy — gives c = 0.995. To obtain two
decimal digits accuracy requires c = 0.99995. Clearly, when obtaining results of such
accuracy, one does not trouble to measure correlation coefficients at all. The variables
being measured are obviously correlated, and one is more likely to concern oneself with
the precise form of their relationship and the mechanism which produces it.

Now consider correlations such as are commonly reported in statistical studies. For
example, it is claimed (see, for example, (Herrnstein and Murray 1994) and the refer-
ences therein) that between 40% and 80% of variation in intelligence is explained by
variation in genes. We are not here concerned with the validity of the studies which
have produced this figure, but only with what it implies for the problem of predicting
one variable from the other in an individual case. If c =

√
0.8 = 0.89, then c′ = 2.236,

and the mutual information is lg 2.236 = 1.16. For c =
√

0.4, the mutual information
is 0.35. In other words, knowing everything about someone’s genes gives somewhere
between one-third of a bit and just over one bit of information about their IQ.

(Herrnstein and Murray 1994) also makes this general point, that the many statis-
tical correlations they discuss (typically no higher than the c = 0.4 level) do not allow
drawing conclusions about individuals. However, every time a statistically validated
test is used to make a decision about an individual (which is the main purpose of most
such tests), either one is drawing such a conclusion, or one is indifferent to the accuracy
of the decision with regard to the specific individual, just as a casino is indifferent to
the outcome of any particular bet. This issue arises not only for the correlation between
the thing being tested for and the thing being predicted, but also for the correlation
between the test score and the entity the test is intended to measure. We have no
alternative to suggest; we are simply pointing out the scale of the problem.

Far lower correlations than 0.89 are often published. The previously cited survey
(McPhail 1971) found that only 1% of the correlations reported were over 0.4, corre-
sponding to a mutual information of 0.125. For practical purposes, this is no information
at all in the individual case. Yet because a sufficient quantity of data has been amassed
to be statistically sure at a high confidence level that the correlation differs from 0,
such a result can be published and claimed to demonstrate a connection between two
variables, when in practice it demonstrates a lack of connection.

Practical predictions

The mutual information is the maximum amount of information that could possibly be
obtained about Y by knowing X . It does not give any method for actually extracting
that much information, and in general it may not be possible. We consider in this
section three practical methods of attempting to estimate Y from X . For simplicity, we
take the means of X and Y to be zero, and the conditional standard deviations a and
b to be 1. We also assume that c is non-negative.

Sign estimation

Suppose we attempt to predict just one bit of information about Y , given X , one yes-no
decision: whether Y is positive. If the correlation is positive then the best we can do
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is to estimate the sign of Y by that of X . What proportion of correct predictions will
we make overall? The formula for this is 1

π cos−1(−c), tabulated in the second column
of Table 2.

At a correlation of 0.5, classification is correct 2/3 of the time, compared with the
50% that would be obtained by blind guessing. There is no way to tell which 1/3 of
the decisions are the incorrect ones. 0.8 correlation gives four out of five correct, not
good odds when the decision is of any importance to the individual. If the individual
demands that the same standard of confidence apply to his case as are commonly used
in the detection of statistical trends, i.e. 95% or 99% confidence of receiving a correct
decision, then the required correlation is 0.988 or 0.9995 respectively.

The task of sign estimation assumes that one knows the means of X and Y . We can
devise a similar task which does not depend on this information. Given two random
individuals, we can estimate which has the higher value of y by seeing which has the
higher value of x. The proportion of correct decisions turns out to be the same as the
probability that for a single individual, y has the same sign as x, which we have just
computed.

Screening tests

Although, as we mentioned above, we cannot tell which of the predictions of Y from
X are the correct ones, we can be more confident of those where the magnitude of X
is large. We therefore pose the questions: How large must the magnitude of X be, for
the estimate of the sign of Y to be correct at least 1 − ε of the time? And for what
proportion of the population does X have such a magnitude? To the first question,
the answer is that |x| must be at least δ = 1

cΦ−1(1 − ε). To the second, the answer is
S(c, ε) = 2(1 − Φ(δ/c′)). S is tabulated for various values of c and for ε = 5% and 1%
in the third and fourth columns of Table 2.

A correlation of 0.2 is clearly useless. To give concrete meaning to just how useless
it is, suppose that such a test were being applied to the entire human population of the
world (currently about 6× 109 people). There is only about one chance in 200,000 that
anyone would be reliably classified at the 5% level. At the 1% level, the probability of
a given individual being reliably classified is 1 in 2.3 × 1029. The latter number is the
number of atoms in about 2.5 tons of water. (These extreme figures must be taken with
some common sense. In practice, no real distribution can even be observed at such a
large distance from the mean, let alone measured. Nevertheless, for any distribution
with rapidly decreasing tails, the qualitative conclusion holds.)

At a correlation of 0.5, fewer than 5 in 1000 of the population are reliably classified.
This is still useless. A correlation of 0.9 reliably classifies less than half the population
at the 5% confidence level. Only at a correlation of 0.99 does it begin to be useful —
four fifths of the population are reliably classified at the 5% confidence level, and nearly
three quarters at the 1% confidence level.

If an individual requires a 95% chance of receiving a prediction that has a 95%
chance of being correct, the correlation must be over 0.99995, and for a 99% chance of
receiving a prediction that is 99% likely to be accurate, the required correlation will be
in practice unmeasurably close to 1.

If Y is impossible to measure at the time when a prediction of its value is required,
then with a correlation of less than 0.99 one must choose between making many un-
reliable predictions, refusing to make predictions in many cases, or finding something
more useful to measure. If Y can be measured, then we can predict it from X when
|X | > δ, and measure Y in the remaining cases. This is useful when Y is more difficult
or expensive to measure than X . That is, the measurement of X is used as a screening
test. Whether this is worth doing depends on the relative cost of the two measurements
and the proportion of the population which is reliably classified by the measurement
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of X . If a direct measurement of Y costs K times as much as a measurement of X ,
then using the screening test will give a relative saving of S(c, ε) − 1/K over the cost
of measuring Y in every case. For this to be an improvement requires K > 1/S(c, ε).
The maximum possible cost saving, in the limit where testing X is free, is S. At a
correlation of 0.9, the cost ratio is 2.3, and the cost saving can be at most 42.6%.

At a correlation of 0.99, four fifths of the population can be given just the simple
test at the 5% confidence level, and nearly three quarters at the 1% confidence level.
The break-even point for costs is a ratio of 1.2 or 1.33 respectively. Nevertheless, it
must not be forgotten that if a screening test is only accurate at the 1% confidence
level, then about 1% of those it is given to will be misclassified. What proportion of
misclassifications is acceptable depends on the purpose of the test and on the context
in which it is being used.

As for the case of sign estimation, we can devise a version of the screening test
which does not require knowing the mean of X . Given a correlation c, and two random
samples (x, y) and (x′, y′), suppose we predict that y′ > y if x′ − x is at least a certain
amount δ. How large should δ be to ensure that when we make this prediction, we
can have at least a certain confidence in it, and given the confidence we require, what
proportion of pairs of random samples allow such a prediction to be made? As for
simple sign estimation, this problem reduces by a change of variables to the screening
problem we have just studied, and the same figures apply.

Decile estimation

Just as a correlation sufficient to give one bit of mutual information is not enough to
perform reliable sign estimation, so a correlation giving one decimal digit’s worth of
information is not enough to reliably estimate the magnitude of the dependent variable
with that accuracy.

If we use bcx/a to estimate y, we can ask the question, how likely is it for a random
data point (x, y), that bcx/a and y differ by no more than half a decile either way of the
unconditional distribution of Y ? The probability is

∫ x=∞
x=−∞ Φcx,1(y1) −Φcx,1(y0) where

y0 = Φ−1
0,c′(Φ0,c′(cx)−α/2), y1 = Φ−1

0,c′(Φ0,c′(cx) + α/2), and α = 0.1. This is tabulated
in Table 3. For an estimate to this accuracy to be wrong in no more than 5% of cases
requires a correlation of at least 0.997.

Accuracy of the sample correlation coefficient

So far, we have considered the correlation coefficient of the population to be given.
In practice, it is estimated from a sample, and there will be some uncertainty in the
estimate. The smaller the sample, the larger the uncertainty.

To make this estimate, it is not sufficient to merely establish that the sample cor-
relation and the sample size imply that the population correlation is very likely to be
positive. As we have seen, the mere knowledge that a correlation is positive does not
imply any useful relationship between the variables. We must obtain a numerical esti-
mate of the minimum likely value of the population correlation. (Usually, one will not
be concerned to place an upper bound on the correlation — the higher the correlation,
the better.)

To do this, we need to know the distribution of the sample correlation, given the
population correlation and the sample size. For the bivariate normal distribution, this
may be accurately estimated via Fisher’s z-transformation ((Kendall, Stuart, and Ord
1987, §16.33), (Wilks 1962, p. 594)). For a sufficiently large sample size n, a sample
correlation c, and a population correlation ρ, let z = 1

2 log 1+c
1−c and ζ = 1

2 log 1+ρ
1−ρ ,
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where log is the natural logarithm. Then (z − ζ)
√

n − 1 is very close to being normally
distributed with mean 0 and standard deviation 1.

From this result we can calculate a confidence bound for an estimate of population
correlation. If we observe a positive sample correlation c in a sample of size n, for what
value ρ can we conclude with confidence that the population correlation is at least ρ?
Table 4 tabulates this for sample sizes of 100 and 20 and confidence levels of 95% and
99%.

To be sure at the 5% confidence level that the population correlation is at least,
say, 0.866 (giving exactly one bit of mutual information between the variables), the
correlation observed for a sample of 100 must be at least 0.9. If the sample size is only
20, one needs to observe a sample correlation of at least 0.935. At the 1% confidence
level the sample correlation needs to be even higher: 0.914 and 0.952 respectively.

At lower correlations the difference between sample correlation and minimum likely
population correlation is even larger. If one is interested in knowing with 95% confidence
that the population correlation is at least 0.2, a sample of 20 must display a correlation
of at least 0.52 to allow this inference to be drawn.

The relation between population, sample correlation, and confidence level can be
looked at in another way. If one desires to detect at confidence level ε that the popu-
lation correlation is at least c, then if the population correlation is actually only c, the
probability that one’s test will detect it is only ε.

Relationships for populations and individuals

Suppose that the bivariate data arise from taking some number of individuals, and
obtaining from each individual some number of pairs (x, y). The set of all the data will
have a certain correlation c between x and y. The set of data from the ith individual will
have a correlation ci. What relation may hold between c and the individual ci? What
relation may hold between the regression line for the whole data and the regression lines
for individuals?

No relation need hold at all. To visualise why this is, imagine the scatterplot of the
whole set of data. If c is positive, this will have the general shape of an oval in the
xy plane whose long axis has positive gradient, as in Figure 1. Each individual’s data
will consist of some subset of those points. Clearly, it is possible to cover the oval with
smaller ovals whose eccentricities and long axis directions bear no relationship to each
other nor to those properties of the whole oval.

This has nothing to do with the particular distribution, or with c as the statistic;
clearly, the same situation obtains for any statistic calculated from any population
distribution other than highly degenerate ones, such as a population of identical data
points.

The moral of this is that no argument can be made from a relationship between
variables shown by a population, and the relationship between them for any individ-
ual. The population relationship is a property only of the population, and not of any
individual in it; excluding degenerate cases, any relationship between the population
variables is consistent with any individual relationship, or any combination of individ-
ual relationships. See (Powers 1990) for a simulated example in which the correlation
between an independent variable and a dependent variable had, for every individual in
a population, a sign opposite to that of the correlation over the whole population.

If enough data points are taken for each individual to estimate the relationship
between X and Y for an individual, then the group statistics are irrelevant to that
task. If not enough data points have been taken, the task is impossible, and the group
statistics are still irrelevant. In many situations, only one data point (x, y) is measured
per individual. This is the case, for example, in most data collected from surveys. It
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is also inherent in the nature of some experiments, especially in the area of learning.
It is not possible to predict from such a data set what y would have been for a given
individual if x had been different. However, it is easier to overlook the error, since
an actual distribution of data from that individual is not available as a standard to
compare with the prediction.

Predictions for non-random subpopulations

The preceding section assumes that the quantity of data from a single individual is
a small proportion of the whole data set. For larger non-random subpopulations, it is
possible to say something about the relationship between population and subpopulation
statistics, but not very much. For bivariate normal correlations we shall ask: given a
population correlation of c, and a subpopulation containing a proportion κ of the whole,
what lower bound can be placed on the subpopulation correlation c1? We give a simple
analysis based on the pictures of Figure 1, which will place an upper bound on this
lower bound. That is, we shall exhibit a particular subpopulation designed to have a
low c1. In general it will not be the lowest possible.

If we inscribe the largest possible circle inside an elliptical contour, this represents a
contour for a subpopulation with a bivariate normal distribution with correlation zero.
The relative size of that subpopulation is the ratio of the areas of the circle and the
ellipse, which is the ratio of the minor and major axes of the ellipses. This is

√
1−c
1+c .

More generally, consider a population with a correlation of c, and a subpopulation
with the same means, and a correlation of c1. Given c and c1 < c, how large can
the subpopulation be, assuming both are bivariately normally distributed? This is the
same as asking for the largest possible relative area of a contour ellipse for correlation

c1 contained in one having correlation c, and is κ =
√

(1−c)(1+c1)
(1+c)(1−c1)

. If c and κ are
given, this formula gives an upper bound on the minimum possible correlation c1 of a
subpopulation of relative size κ in a population of size c. This is tabulated in Table 5
for several values of c and a range of subpopulation sizes.

For a subpopulation of half the total population, if the population correlation is
0.95, the subpopulation correlation could be as low as 0.81. For c as low as 0.5, the
subpopulation correlation could be negative. If the subpopulation is not constrained to
be bivariate normal, lower correlations are possible. Finiteness of the population and
subpopulation also widen the bounds of possible subpopulation correlations — barring
degenerate cases, a subpopulation of two will have a correlation of ±1.

Note that a non-random subpopulation can have a distribution bearing no resem-
blance to the parent distribution. Depending on the source of the data, it may be
possible to justify an assumption that a certain subpopulation has a distribution resem-
bling that of the total population, but its distribution cannot be inferred from the total
distribution.

If the population has an arbitrary distribution, then one can construct examples
where the population has correlation c and a subpopulation which omits just one point
has a correlation c1, for any values of c and c1 with −1 < c < 1 and −1 ≤ c1 ≤ 1.

Multivariate analysis

We shall only touch on the complexities of multivariate analysis. If one’s goal is to
predict a variable Xn from the values of n−1 variables X1, . . . , Xn−1, then the difficulties
we have discussed in the bivariate case are magnified. If the correlations between each
of X1...n−1 and Xn are small, then correlations among X1...n−1 can easily defeat an
attempt to explain all of the variation in Xn.
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It is possible to synthesize artificial problems in which, for example, four variables
X1, X2, X3, and X4, each correlating 0.5 with a variable X5, together account perfectly
for all the variation in X5. (This will be so, for example, when each of X1...4 is identically
and independently normally distributed, and X5 = X1 + X2 + X3 + X4.) However, it
is questionable whether in actual experimental situations one ever manages to account
for a large proportion (i.e. over 99%) of the variance of a variable one wishes to explain,
by amassing more and more small correlations of that variable with other variables (a
procedure which might be dubbed “career MANOVA”). The author would be interested
to hear of any real study in which this has been achieved.

Even that variation in Xn which can be associated with the variables X1, . . . , Xn−1

cannot necessarily be associated with any of them in particular. Consider the trivariate
case. The multivariate normal distribution over a vector of random variables X =
(X1, . . . , Xn) has the probability density function P (X) = K exp(−XTAX), where K
is a constant, and A is a matrix subject to the constraint that the contours of P be
bounded surfaces.

As an example, take A =


 1 0.5 0.5

0.5 1 0.5
0.5 0.5 1


. This describes a distribution in

which, when any of the variables X1, X2 and X3 is fixed, the correlation between the
other two is 0.5. If we estimate X3 by X1 (which amounts to choosing the major axis of
the c = 0.5 ellipse in Figure 1 instead of the least-squares line) then the errors X3 −X1

will have a correlation of zero with X2. If, on the other hand, we estimate X3 by X2,
then the errors X3−X2 have a correlation of zero with X1. There is no way, given only
the probability distribution or a sampling from it, of separating the relationships of X3

with X1 and X2.

Other correlational problems

We have considered only bivariate and multivariate correlations for normal distribu-
tions. We have not considered analyses where the values of some variables are set by
the experimenter and the values of others observed, nor have we considered non-normal
distributions. However, although the precise figures will be different, we do not ex-
pect our conclusions to be substantially different in these or related situations. See
(Brown 1975; Runkel 1990) for further discussion of the role of correlational studies in
experimental investigations.
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Figure legends

Figure 1: Contour and regression lines for various correlation coefficients.

Figure 2: Scatter plots of 100 points for various correlation coefficients.
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Figure 1: Contour and regression lines for various correlation coefficients.

c = 0 c = 0.2 c = 0.5 c = 0.8 c = 0.866

c = 0.9 c = 0.95 c = 0.99 c = 0.995 c = 0.99995
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Figure 2: Scatter plots of 100 points for various correlation coefficients.

c = 0 c = 0.2 c = 0.5 c = 0.8 c = 0.866

c = 0.9 c = 0.95 c = 0.99 c = 0.995 c = 0.99995
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Table 1: Correlation, variance, and mutual information.

Variance in Y Improvement Mutual
Correlation attributed to X unaccounted for ratio information (bits)

0 0% 100% 1 0
0.2 4% 96% 1.02 0.028
0.5 25% 75% 1.15 0.20
0.8 64% 36% 1.67 0.74

0.866 75% 25% 2 1
0.9 81% 19% 2.29 1.20
0.95 90.25% 9.75% 3.20 1.68
0.99 98% 2% 7.09 2.83
0.995 99% 1% 10 3.32

0.99995 99.99% 0.01% 100 6.64
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Table 2: Binary classification and screening.

Prob. of correct Rate of reliable classification
Correlation sign estimation 5% confidence 1% confidence

0 50% 0% 0%
0.2 56% 7.5 × 10−14% 4.3 × 10−28%
0.5 67% 0.4% 0.006%
0.8 80% 21.7% 8.1%

0.866 83.3% 34.2% 17.9%
0.9 85.6% 42.6% 26.0%
0.95 89.9% 58.9% 44.4%
0.99 95.5% 81.5% 74.0%
0.995 97.8% 86.9% 81.5%

0.99995 99.68% 98.7% 98.1%

17



Table 3: Decile estimation.

Prob. of estimation
Correlation within ± half a decile

0 10%
0.8 25%
0.9 36%
0.95 47%
0.99 78%
0.995 89%
0.997 95%
0.9985 99%
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Table 4: Estimation of population correlation.

Minimum c that must be observed
Desired ε = 0.05 ε = 0.01

lower bound on ρ Sample size 100 Sample size 20 Sample size 100 Sample size 20

0 0.16 0.36 0.23 0.49
0.2 0.35 0.52 0.41 0.63
0.5 0.61 0.73 0.65 0.79
0.8 0.85 0.90 0.87 0.926

0.866 0.90 0.935 0.914 0.952
0.9 0.927 0.952 0.936 0.964
0.95 0.964 0.976 0.968 0.983
0.99 0.9928 0.9953 0.9937 0.9966
0.995 0.9964 0.9976 0.9969 0.9983

0.99995 0.999964 0.999976 0.999969 0.999983
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Table 5: Correlation in nonrandom subpopulations.

Subpopulation Min. subpop. correl. c1 for pop. correl. c
relative size κ c = 0.5 c = 0.8 c = 0.9 c = 0.95

10% −0.94 −0.83 −0.68 −0.44
20% −0.79 −0.47 −0.14 0.22
40% −0.35 0.18 0.50 0.72
50% −0.14 0.38 0.65 0.81
60% 0.04 0.53 0.74 0.87
80% 0.32 0.70 0.85 0.92
100% 0.50 0.80 0.90 0.95
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A Appendix to “Population statistics cannot be used
for reliable individual prediction”

This appendix provides proofs of theorems and derivations of formulas stated in the
body of the paper. It is primarily for the benefit of the referees and of interested
readers of the main paper and is not necessarily intended to appear in print.

Most of the mathematics is standard statistical theory, for which see (Kendall, Stu-
art, and Ord 1987) as a general reference. Some of the calculations here have not to my
knowledge been previously published.

A.1 The bivariate normal distribution

When integrating with respect to one variable, the following form of P is useful:

P (x, y, a, b, c) =
1

2abc′π
exp(−x′2/c′2) exp(−(y′ − cx′)2/2)

where x′ = x/a, y′ = y/b, and c′ = 1/
√

1 − c2. In addition, we recall the following facts
about normal distributions: ∫

x

e−x2/2k2
= k

√
2π

∫
x

x2e−x2/2k2
= k3

√
2π

That is, 1
k
√

2π
e−x2/2k2

is the probability density function for a normal distribution with
mean 0 and standard deviation k.

Theorem A.1 1. P is a probability distribution, i.e. it is everywhere non-negative,
and its integral over all x and y is 1.

2. If Y is fixed at y, the distribution of X is a normal distribution with mean acy/b
and standard deviation a.

3. If Y is unknown, the distribution of X is a normal distribution with mean 0 and
standard deviation ac′.

Proof.

1. P is obviously non-negative.
∫

x

∫
y

P (x, y, a, b, c) =
1

2abc′π

∫
x

∫
y

exp(−1
2
(
x2

a2
+

y2

b2
− 2cxy

ab
))

=
1

2c′π

∫
x

∫
y

exp(−1
2
(x2 + y2 − 2cxy))

=
1

2c′π

∫
x

exp(−x2/2c′2)
∫

y

exp(−(y − cx)2/2)

=
1

2c′π

∫
x

exp(−x2/2c′2)
∫

y

exp(−y2/2)

=
1

c′
√

2π

∫
x

exp(−x2/2c′2)

= 1
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2.

P (x, y, a, b, c) =
1

2abc′π
exp(−1

2
(
x2

a2
+

y2

b2
− 2cxy

ab
))

=
1

2abc′π
exp(−1

2
(

y2

b2c′2
+ (

x

a
− cy

b
)2)

= K exp(−1
2
(
x

a
− cy

b
)2)

where K is independent of x. This is a normal distribution of X as described.

3. Most of the calculation is included in the proof of part 1. Just leave out the
integration over x and the change of variables x/a → x.

�

Theorem A.2 If X and Y are distributed according to P , then the correlation of X
and Y is c.

Proof. The product-moment correlation coefficient of any bivariate probability distri-
bution P (X,Y ) is defined to be

C =

∫
x

∫
y
(x − x)(y − y)P (x, y)√∫

x

∫
y
(x − x)2P (x, y)

∫
x

∫
y
(y − y)2P (x, y)

where x =
∫

x

∫
y xP (x, y) and y =

∫
x

∫
y yP (x, y).

For our particular probability distribution, this simplifies to

C =

∫
x

∫
y xyP (x, y, a, b, c)
√

a2c′2b2c′2

=
1

2a2b2c′3π

∫
x

∫
y

xy exp(−1
2
(
x2

a2
+

y2

b2
− 2cxy

ab
))

=
1

2c′3π

∫
x

∫
y

xy exp(−1
2
(x2 + y2 − 2cxy))

=
1

2c′3π

∫
x

(
x exp(−x2/2c′2)

∫
y

y exp(−1
2
((y − cx)2))

)

=
1

2c′3π

∫
x

(
x exp(−x2/2c′2)

∫
y

(y + cx) exp(−y2/2)
)

=
1

2c′3π

(∫
x

cx2 exp(−x2/2c′2)
)(∫

y

exp(−y2/2)
)

=
c

c′3
√

2π

∫
x

x2 exp(−x2/2c′2)

= c

�

The fact that the regression lines of Y against X and of X against Y are not identical
often seems counterintuitive to beginning students of statistics. Figure 1 demonstrates
why each line must stand in the relation it does to the ellipse (at least for a bivariate
normal distribution), and hence why the two lines must be different, and why they
approach each other as c tends to ±1.

As the ellipses are all similar, we fix on the contour lines for k = 1 and consider
how the shape of the ellipse changes with c. (The contour height is P (1, 0, 1, 1, c) =
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1/2π
√

e ∼ 0.097.) This contour is defined by the equation x2 + y2 − 2cxy = 1. When
c = 0, this is the unit circle. As c increases, it becomes an ellipse whose major axis is
along the line x = y, and stretches more and more as c approaches 1. In the limit as c
approaches 1, the ellipse stretches without bound, approximating to the pair of straight
lines x−y = ±1. For negative c the symmetrical transformation happens along the line
x = −y. Figure 1 shows this for selected values of c, scaled so that the variables have
unit unconditional standard deviation. The ellipses tend to the finite line segment from
(−1,−1) to (1, 1) as c approaches 1.

The values of Φ(x) we require sometimes go far beyond the range of standard statis-
tical tables. We have therefore calculated them from formulae 7.1.26 (for small |x|) and
7.1.13 (for large |x|) from (Abramowitz and Stegun 1964), for the related error function
erf(x) = 2√

π

∫ x

0 e−x2
dx. erf(x) and Φ(x) are related by Φ(x) = 1

2 (1 + erf(x/
√

2)).

A.2 Analysis of variance

Suppose we try to fit a function Y = f(X) to a probability distribution P (X,Y ) in the
plane. One measure of the goodness of fit is the average squared error:

∫
x

∫
y

P (x, y)(f(x) − y)2

If f is to be chosen to minimise this quantity, then it is clear that for each x, f(x)
should be chosen to minimise

∫
y P (x, y)(f(x) − y)2. Let Px(y) be the distribution of

Y given X = x. Thus Px(y) = KxP (x, y), where Kx = 1/
∫
y P (x, y). So f(x) should

minimise
∫

y
Px(y)(f(x) − y)2. Since this is equal to (f(x) − yx)2 +

∫
y
(yx − y)2, where

yx =
∫

y
yPx(y), it is minimised by taking f(x) = y. In other words, the least squares

estimate of a random variable is its mean.
When this is done, the total variance of Y can be divided into two parts: the variance

in f(X) due to variation in X , and the remainder, the variance of f(X) − Y . We can
say that the first component is the part of the variance of Y which is explained by
variation in X . This is a technical mathematical meaning of the word “explain” which
bears little relation to its everyday use. This calculation can be made regardless of the
meaning of X and Y . To draw a line through a set of points does not in itself constitute
an explanation of anything.

The total variance of Y , assuming Y to have mean 0, is
∫

x

∫
y
y2P (x, y). The division

into two components is constructed thus:
∫

x

∫
y

y2P (x, y) =
∫

x

(
yx

2P (x) +
∫

y

(yx − y)2P (x, y)
)

= Var(f(X)) +
∫

x

∫
y

(f(x) − y)2P (x, y)

For the bivariate normal distribution, yx = bcx/a. Therefore f(X) = bcX/a is the
function which best estimates Y from X , and since it happens to be linear, it is also
the best straight line. The two components of the variance are c2b2c′2 and b2, their
sum being b2c′2. The proportion of the variance due to X is c2, and the remaining
proportion is 1 − c2.

A.3 Mutual information

For a joint normal distribution we shall compute the entropy HX of X given no infor-
mation about Y , and the entropy HX|Y of X given Y , where the entropy H(P ) of a
probability distribution P is the integral of −P lg P over the whole space. This enables
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us to calculate IX|Y = HX − HX|Y , the information given about X by knowing the
value of Y . (Note that this quantity is actually symmetrical in X and Y : it is also the
information given about Y by knowing the value of X . This is true for all distributions.)

Theorem A.3 The entropy of a one-dimensional normal distribution with standard
deviation a is lg a + C, where C is the constant lg(

√
2π
e ) = −0.1169.

Proof. Let P (x) = 1
a
√

2π
exp(x2/2a2).

∫
x

−P lg P =
1

log 2

∫
x

−P log P

=
1

a
√

2π log 2

∫
x

exp(
x2

2a2
)(− x2

2a2
+ log(a

√
2π))

= lg(a
√

2π) − 1
a
√

2π log 2

∫
x

x2

2a2
exp(

x2

2a2
)

= lg(a
√

2π) − 1
log 2

= lg a + lg
√

2π

e

�

Theorem A.4 HX = lg(ac′
√

2π) − C. HX|Y = lg(a
√

2π) − C.

Proof. Immediate from Theorems A.1(parts 2 and 3) and A.3. �

Theorem A.5 The mutual information IX|Y given about X by knowing the value of
Y is lg c′.

Proof. By definition, IX|Y = HX − HX|Y . The result follows from the preceding
theorem. �

A.4 Sign estimation

Without loss of generality, we assume that X and Y are normalised to have standard
deviation 1. The proportion of errors in estimating the sign of Y from the sign of X is
the measure of the upper right and lower left quadrants of an elliptical contour line of
the distribution, as a fraction of the area of the ellipse. The ratio of the lengths of the
x = y and x = −y axes of the ellipse is

√
1+c
1−c . Squeezing the plane along the x = y

axis by this factor transforms the ellipse into a circle, and changes the angle between
the x and y axes to 2θ, where tan θ =

√
1+c
1−c . The proportion sought for is now the

ratio of the transformed sectors to the area of the circle, which is 2θ/π. The proportion

of correct predictions for a correlation of c is therefore 2
π tan−1

√
1+c
1−c = 1

π cos−1(−c).
Now consider the modified problem of estimating the sign of Y ′ − Y by the sign

of X ′ − X . (x, y, x′, y′) is distributed over a four-dimensional space according to
P (X,Y,X ′, Y ′) = P (X,Y )P (X ′, Y ′), where P (X,Y ) is the bivariate normal distri-
bution. As before we take P (X,Y ) to be normalised so that both arguments have mean
0, standard deviation 1, and correlation c. The probability we require is the total mea-
sure of the four-dimensional subspace within which x′−x and y′−y have the same sign.
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Observe that X and X ′ are independently distributed, and that P (x, y, x′, y′) is circu-
larly symmetric about the plane y = 0, y′ = 0. The same is true of Y , Y ′, and the plane
x = 0, x′ = 0. Therefore P (x, y, x′, y′) remains invariant under any four-dimensional
rotation about these two planes. Consider a rotation of π/4 about each plane. That is,
we change to coordinates (x1, y1, x

′
1, y

′
1) such that:

x1 = (x′ + x)/
√

2

x′
1 = (x′ − x)/

√
2

y1 = (y′ + y)/
√

2

y′
1 = (y′ − y)/

√
2

Then the measure we require is of that part of the space where x′
1 and y′

1 have the same
sign. Since P (x, y, x′, y′) = P (x1, y1, x

′
1, y

′
1) = P (x1, y1)P (x′

1, y
′
1), this is equal to the

measure of that part of the distribution P (X,Y ) where X and Y have the same sign.
This is exactly what we calculated earlier. Therefore a correlation of c implies that the
proportion of correct predictions is 1

π cos−1(−c).

A.5 Screening tests

The distribution of Y , given X = x, is normal with standard deviation 1 and mean cx.
When x is positive, the probability that Y is negative is 1 − Φ−1(cx). For this to be
at most ε, x must be at least δ = 1

cΦ−1(1 − ε). A similar analysis applies for negative
x. Since the unconditional standard deviation of x is c′, the probability S(c, ε) that the
magnitude of x is at least this great is 2(1 − Φ(δ/c′)).

For the modified screening test problem (estimating the sign of Y ′ − Y by the sign
of X ′ −X when |X ′ −X | > δ), we apply the same four-dimensional rotation as for the
modified sign estimation problem. This reduces it to the basic screening test problem.

The number of atoms in 2.5 tons of water is 2.5×106 grams × 3 atoms per molecule
×6 × 1023 molecules per mole / 20 grams per mole of water = 2.25× 1029.

A.6 Correlations and regression lines for non-random subpop-
ulations

For the relation between population correlation c, subpopulation correlation c1, and rel-
ative subpopulation size κ, we must find the largest ellipse associated with a correlation
of c1 which is contained in one of correlation c. This is an ellipse, one axis of which
coincides with the minor axis of the larger ellipse. The ratio of areas of the ellipses
is the ratio of their other axes. From the preceding formula it follows that this ratio

is κ =
√

(1−c)(1+c1)
(1+c)(1−c1)

. Given c and κ, define d = κ2 1+c
1−c . Then c1 = d−1

d+1 . This is the
formula tabulated in Table 5.

We can similarly derive a lower bound for the maximum possible subpopulation
correlation (not tabulated in the main paper): this is 1−d′

1+d′ where d′ = κ2 1−c
1+c .

An example such as is described at the end of the section on subpopulations con-
sists of a subpopulation, bivariately normally distributed with means 0, unconditional
standard deviations 1, and correlation c, and a population which adds a single point at
(A,B), for some A and B. Choosing A large enough and B = ±A gives a population
correlation arbitrarily close to ±1. By the mean value theorem, there are other choices
of A and B yielding any correlation between those limits.
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