Example

Disturbance is a sinusoid: $^{d} = \sin(wt + \phi)h$

Then for a linear system, perception must be a sinusoid of the same frequency $p = m \sin(wt)$

 $\frac{1}{m}$ is the "control ratio", $C.R = \frac{|d|}{|p|}$ Using the standard method of analyzing the control loop: p = d + o, = d + k # e dt = d + k # (r - p) dt = d - k # p dtd = p + k # p dt $\sin (wt + \phi) = m \sin (wt) - \frac{km}{w} \cos (wt)$ $\frac{1}{m} \sin (wt + \phi) = \sin (wt) - \frac{k}{w} \cos (wt)$ Set $c = \frac{-k}{w}$ and x = wt $\frac{1}{m} \sin (x + \phi) = \sin (x) + c \cos (x)$

From the generic formula:

 $A \cos x + B \sin x = C \sin (x + \theta)$, where $C = {}^{A}A^{2} + B^{2}\mathbf{h}^{2}$ and $\theta = \arctan(\frac{B}{A}) = \arcsin \frac{B}{\sqrt{A^{2} + B^{2}}}\mathbf{m}$ we have:

 $\phi = \arcsin \frac{1}{\sqrt{1 + c^2}} \mathbf{m}$ The "control ratio" $C.R. = \frac{1}{m} = \sqrt{1 + c^2} = \frac{\sqrt{W^2 + k^2}}{W}$ At high frequencies, the control ratio $\frac{1}{m} \& 1$ (no control), and at low frequencies $\frac{1}{m} \& \frac{k}{W}$

Now consider the correlation between *p* and *d*, which we obtain by integrating the cross product of the scaled sinusoids for *p* and *d*. Scaling the components: $\#^{2\pi} \sin^2(x) dx = \pi$, so scale *p* by $\sqrt{\pi}$ and *d* by $m\sqrt{\pi}$ to bring both to unity scale

correl (p.d) =
$$\frac{1}{\pi} \int_{0}^{2\pi} \sin(x + \phi) \cos(x) \, dx = \frac{1}{\pi} \int_{0}^{2\pi} (\sin(2x + \phi) + \sin(\phi)) \, dx$$

= $0 + \frac{1}{2\pi\sqrt{1 + c^2}} \int_{0}^{2\pi} dx = \frac{1}{\sqrt{1 + c^2}}$

The correlation is $\frac{1}{CR}$