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ABSTRACT: An inverted pendulum is sim- 
ulated as a control task with the goal of 
learning to balance the pendulum with no a 
priori knowledge of the dynamics. In con- 
trast to other applications of neural networks 
to the inverted pendulum task, performance 
feedback is assumed to be unavailable on 
each step, appearing only as a failure signal 
when the pendulum falls or reaches the 
bounds of a horizontal track. To solve this 
task, the controller must deal with issues of 
delayed performance evaluation, learning 
under uncertainty, and the learning of non- 
linear functions. Reinforcement and tem- 
poral-drference learning methods are pre- 
sented that deal with these issues in order to 
avoid unstable conditions and balance the 
pendulum. 

Introduction 

The inverted pendulum is a classic ex- 
ample of an inherently unstable system. Its 
dynamics are basic to tasks involving the 
maintenance of balance, such as walking and 
the control of rocket thrusters. A number of 
control design techniques have been inves- 
tigated using the inverted pendulum [ 11-[4]. 
The successful application of these design 
techniques requires considerable knowledge 
of the system to be controlled, including an 
accurate model of the dynamics of the sys- 
tem and an expression of the system’s de- 
sired behavior, usually in the form of an ob- 
jective function. 

How can control be accomplished when 
such knowledge is not available? This ques- 
tion is addressed here by considering the in- 
verted pendulum control problem when the 
dynamics are not known a priori and an an- 
alytical objective function is not given. All 
that is known are the values and ranges of 
the state variables of the inverted pendulum 
system and that a negative failure signal is 
to be maximized over time. A function that 
selects control actions given the current state 
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of the pendulum must be learned through 
experience by trying various actions and not- 
ing the results, starting with no hints as to 
which actions are correct. 

Without an objective function to evaluate 
states and actions, modifications to the con- 
troller can be based only on the occurrence 
of failure signals. A long sequence of actions 
can develop before a failure signal is en- 
countered, resulting in the difficult assign- 
ment-ofcredit problem, where it is neces- 
sary to decide which actions in the sequence 
contributed to the failure. 

In this paper, neural network learning 
methods are described that learn to generate 
successful action sequences by acquiring two 
functions: an action function, which maps 
the current state into control actions, and an 
evaluation function, which maps the current 
state into an evaluation of that state. The 
evaluation function is used to assign credit 
to individual actions. Two networks having 
a similar structure are used to learn the action 
and evaluation functions. They will be re- 
ferred to as the action network and the eval- 
uation network. 

As shown in later sections, the desired 
evaluation function for the inverted pendu- 
lum task is nonlinear; a single-layer neural 
network cannot form this map. One solution 
to this problem is to transform the original 
state variables into a new representation with 
which a single-layer network can form the 
evaluation function. Barto et al. [5]  dem- 
onstrated a quantization of the state space of 
the inverted pendulum with which single- 
layer networks could learn to balance the 
pendulum. A second solution is to add a sec- 
ond adaptive layer that learns such a repre- 
sentation. Anderson [6] extended the work 
of Barto et al. by applying a form of the 
popular error back-propagation method to 
two-layered networks that learn to balance 
the pendulum given the actual state variables 
of the inverted pendulum as input. 

In this paper, the work of Barto et al. and 
Anderson is summarized by discussing the 
neural network structures and learning meth- 
ods from a functional viewpoint and by pre- 
senting the experimental results. First, the 
inverted pendulum task and previous appli- 
cations of neural networks to this task are 
described. 

Inverted Pendulum 
The inverted pendulum task involves a 

pendulum hinged to the top of a wheeled cart 
that travels along a track, as shown in Fig. 
1. The cart and pendulum are constrained to 
move within the vertical plane. The state at 
time t is specified by four real-valued vari- 
ables: the angle between the pendulum and 
vertical and the angular velocity (0, and 4,) 
and the horizontal position and velocity of 
the cart (h, and A,).  The inverted pendulum 
system was simulated using the following 
equations of motion, where the units of 0, 
h, and time t are radians, meters, and sec- 
onds, respectively, and where g is the ac- 
celeration due to gravity (9.8 m/sec2), F, the 
output of the action network (k10 N), m, 
the mass of the cart (1 .0 kg), m the mass of 
the pendulum plus the cart (1.1 kg), and 1 
the distance from the pivot to the pendulum’s 
center of mass (0.5 m). 

.. e, = 

i;, = {F,  + mpl[4f sin e, - 8, cos ~ , l } / m  

This system was simulated by numerically 
approximating the equations of motion using 
Euler’s method with a time step of 7 = 0.02 
sec and discrete-time state equations of the 
form O[t + 1 1  = e[r] + ~ & [ i ] .  The sampling 
rate of the inverted pendulum’s state and the 
rate at which control forces are applied are 
the same as the basic simulation rate, i.e., 
50 Hz. 

The goal of the inverted pendulum task is 
to apply a sequence of right and left forces 
of fixed magnitude to the cart such that the 
pendulum is balanced and the cart does not 
hit the edge of the track. A zero-magnitude 

mg sin er - cos O , [ F ,  + mP@ sin e,] 
(413)ml - m,l cos’ 0, 

Fig. 1 .  The inverted pendulum. 
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force is not permitted. Bounds on the angle 
and on the cart’s horizontal position specify 
the states for which a failure signal occurs. 
There is no unique solution-any trajectory 
through the state space that does not result 
in a failure signal is acceptable. The only 
information regarding the goal of the task is 
provided by a failure signal, which signals 
either the pendulum falling past + 12 deg or 
the cart hitting the bounds of the track at 
+2.4 m. These two kinds of failure are not 
distinguishable in the case considered herein. 

The goal as just stated makes this task very 
difficult; the failure signal is a delayed and 
rare performance measure. Before describ- 
ing a solution to this formulation of the in- 
verted pendulum task, we briefly discuss 
other approaches that assume the existence 
of additional task-specific knowledge. 

A traditional control approach when the 
dynamic equations of motion are known is 
to assume that the control force F, is a linear 
function of the four state variables (e,, e,, h,, 
h,) with constant coefficients b , ,  . . . , bq: 

F, = b,O, + b2e, + b3h, + b4h, 

The coefficients b, are chosen to stabilize the 
linearized version of the system differential 
equations for 0, and h, small in magnitude. 
This is the approach followed by Cheok and 
Loh [I] in a similar problem; they use linear 
feedback in three (of the four) variables to 
obtain stable control for a ball-balancing ex- 
periment. The success of this approach de- 
pends heavily on the match between the ac- 
tual system dynamics and the linearized 
approximation. 

The earliest application of neural networks 
to the inverted pendulum task is that of Wid- 
row and Smith [7] and Widrow [8]. They 
approached the problem as described earlier, 
using traditional control methods to derive a 
control law to stabilize the linearized system 
for small 8, and h,. Then they trained a net- 
work to mimic the output of the control law 
by observing the input-output behavior of the 
control law as it balanced the pendulum. 
Guez and Selinsky [9] extended this ap- 
proach to include multilayer networks trained 
by observing a nonlinear control law. 

When the dynamics are not known, it is 
necessary to use some adaptive or learning 
approach to obtain a stable control, which is 
some unknown function U of the four state 
variables: 

F, = we,, e,, h,, A,) 
With unknown dynamics, a controller cannot 
be designed to provide examples of desired 
behavior. A human controller who is able to 
stabilize an inverted pendulum is an alter- 

native source of desired behavior, as dem- 
onstrated by Widrow and Smith [7 ] ,  [8] and 
Guez and Selinsky [9]. Tolat and Widrow 
[IO] provide a third demonstration of train- 
ing with a human controller, with the novel 
use of feedback based on pixel values de- 
rived from a visual image of the pendulum 
location rather than the pendulum’s state 
variables. 

If neither a designed controller nor a hu- 
man expert is available, learning must be 
guided by some measure of actual perfor- 
mance. For example, Connell and Utgoff 
[ 111 measured performance by the distance 
from the current state to the (0, 0, 0 , O )  state, 
taking the action on each step that most re- 
duced this difference. As is the case for tra- 
ditional control methods, this amounts to 
adding the knowledge that the system must 
be stabilized about a particular state. Rosen 
et al. [12] assumed a different type of knowl- 
edge, the knowledge that the inverted pen- 
dulum task is a failure-avoidance task. For 
avoidance tasks, longer trajectories through 
state space between failures are more desir- 
able, so Rosen et al. identified actions that 
resulted in cycles in state space as the pre- 
ferred actions. 

The only performance measure present in 
our formulation of the inverted pendulum 
task is the failure signal. The approach to 
this task, as summarized in the next two sec- 
tions, is an example of how successful con- 
trol can be learned when limited task-specific 
information is available. 

Solution Using Two 
Single-Layer Networks 

The architecture of a network and the 
computations performed by each unit specify 
a function from input to output vectors. The 
function is parameterized by the numerical 
connection weights between units and on the 
inputs to the network. The function is altered 
by a learning method that adjusts the values 
of the weights. 

Learning can be based on several forms of 
evaluative feedback (see Hinton [I31 for a 
review). Supervised learning methods, the 
most commonly used in neural networks, re- 
quire a training set of data consisting of input 
vectors and corresponding desired output 
vectors. Such methods cannot be applied to 
tasks for which the desired output of the net- 
work is not known. The inverted pendulum, 
as we have defined it, is such a task: the 
correct action for most states is not even well- 
defined, since many trajectories are possible 
that indefinitely avoid failure. 

If the desired output is not available, the 
performance of the network must be evalu- 

ated indirectly by considering the effect of 
its output on the environment with which the 
network interacts. Reinforcement learning 
methods can be applied when this effect is 
measured by changes in an evaluation signal, 
or reinforcement-a term borrowed from 
theories of animal learning from which re- 
inforcement learning methods originated 

Next we describe the experiments by Barto 
et al. [5] involving two single-layer net- 
works. See Sutton [15] for a more thorough, 
extended treatment of this approach to the 
inverted pendulum task and of reinforcement 
learning methods in general. 

We distinguish the two networks by call- 
ing one the action network and the other the 
evaluation network. The action network 
learns to select actions as a function of states. 
It consists of a single unit having two pos- 
sible outputs, one for each of the two allow- 
able control actions of pushing left or right 
on the cart with a fixed-magnitude force. The 
output of the unit is probabilistic-the prob- 
ability of generating each action depends on 
the weighted sum of the unit’s inputs, i.e., 
the inner product of the input vector and the 
unit’s weight vector. 

Initial values of the weights are zero, mak- 
ing the two actions equally probable. The 
action unit learns via a reinforcement learn- 
ing method. It tries actions at random and 
makes incremental adjustments to its 
weights, and, thus, to its action probabili- 
ties, after receiving nonzero reinforcements. 
The only nonzero reinforcement present in 
the inverted pendulum task is a failure sig- 
nal. Learning good actions is extremely slow 
when based on this rare and delayed signal. 

A second mechanism is needed to appor- 
tion the blame for the failure among the ac- 
tions in the sequence leading to the failure. 
This mechanism is provided by the evalua- 
tion network, which also consists of a single 
unit. The evaluation unit learns the expected 
value of a discounted sum of future failure 
signals by means of a temporal-difference, 
or TD, method of prediction, developed by 
Sutton [ 161. TD methods learn associations 
among signals separated in time, such as the 
inverted pendulum state vectors and failure 
signals. Through learning, the output of the 
evaluation network comes to predict the fail- 
ure signal, with the strength of the prediction 
indicating how soon failure can be expected 
to occur. The predictions are adjusted after 
each step by an amount proportional to the 
network’s input and the difference between 
the new prediction, based on the current state 
of the inverted pendulum, and the previous 
prediction, based on the previous state, i.e., 
the temporal difference or change in predic- 
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tion of failure. This sequence of prediction 
changes ends with the occurrence of failure, 
and the final prediction change is dependent 
on the difference between the failure signal 
and the previous prediction. Convergence 
theorems for the TD class of algorithms have 
been proven by Sutton [16]. Ongoing work 
by Sutton includes the investigation of rela- 
tionships between TD methods and dynamic 
programming. 

The output of the evaluation unit is the 
inner product of the input vector and the 
unit's weight vector. Assuming the input 
vector is a representation of the inverted pen- 
dulum's state (discussed subsequently) and 
that the weights are developed by the TD 
method, the scalar output of the evaluation 
unit provides a ranking of the states. The 
difference in the unit's output on the transi- 
tion from one state to another is used to judge 
the effectiveness of the previous action. An 
increase in the evaluation signifies a transi- 
tion to a state having a weaker prediction of 
failure and that the probability of the pre- 
ceding action should be increased. Similarly, 
the probability of repeating an action that 
precedes an evaluation decrease should be 
lowered. In this way, the change in the eval- 
uation network's output serves as a rein- 
forcement during the possibly long periods 
between failures. However, the learned eval- 
uation function is not always helpful, partic- 
ularly before much experience has been 
gained. The learning methods for updating 
both the evaluation and action networks must 
deal with this uncertainty. 

The performance of any learning system 
is highly dependent on its input representa- 
tion. The four real-valued state variables are 
an adequate representation for the action unit, 
since the optimal control law for a similar 
inverted pendulum task is linear and can be 
approximated by the stochastic action unit. 
However, using this representation would 
prevent the evaluation unit from being able 
to form a good prediction of failure for the 
following reason. 

Consider evaluations as a function of just 
8 and 0 ,  the pendulum's angle and angular 
velocity. The failure signal is defined to have 
the value -1  on failure and 0 for all other 
states. A failure occurs when the value of 8 
is less than - 12 deg or greater than 12 deg. 
States that occur just prior to failure typically 
have either high 8 and high 8 ,  or low 8 and 
low 0 ,  i.e., the pendulum is falling in the 
same direction in which it is leaning. These 
states should produce an evaluation near - I ,  
a strong prediction of failure. Other states, 
such as those for which the pendulum is 
moving toward the balanced position, should 
have an evaluation closer to 0, a weak pre- 

diction of failure. Thus, the shape of this 
evaluation function as the state moves from 
-8,  -0  to +8, + e  is nonmonotonic, first 
rising from - 1 toward 0, then falling back 
toward - 1 .  

Since the output of the evaluation unit is 
a linear function of its input, this evaluation 
function cannot be formed. A different rep- 
resentation of the state must be used for 
which this function is linear. One alternative 
is to adopt a table lookup strategy and divide 
the state space into discrete, nonoverlapping 
regions, associating a unique input compo- 
nent and weight with each region. The input 
components then could be binary-valued, 
with only one being nonzero at a time, sig- 
naling which region the current state of the 
pendulum is in. A unique evaluation can be 
assigned to each region by adjusting the cor- 
responding weight, approximating any func- 
tion to an accuracy determined by the 
coarseness of the state-space partitioning. 

The experiments described here were mo- 
tivated by the work of Michie and Chambers 
[17], who devised a learning system called 
BOXES which learned to control an inverted 
pendulum using a state representation of dis- 
crete regions as described earlier. To com- 
pare with the performance of the BOXES 
learning system, the same representation was 
used. The regions of the state space were 
formed by the intersections of six intervals 
along the 8 dimension and three intervals 
along the 4, h, and h dimensions, making a 
total of 162 regions. The resulting networks 
are shown in Fig. 2. Each unit receives the 
162 binary input components, and the eval- 
uation unit's output directs the learning pro- 
cess for both units. 

The primary purpose of these experiments 
was to compare the learning performances 
of the TD prediction method (called the 
Adaptive Critic in [ 5 ] )  and the method used 
by Michie and Chambers to assign credit to 
actions. The key difference between the 
methods is that Michie and Chambers used 
counters in each region to remember past 
states and times between state occurrences 
and failure, and that learning occurred only 
on failure. The TD method allows learning 
to occur continuously using the learned eval- 
uation function and differences in its output 
as reinforcement, rather than waiting for fur- 
ther failures. 

The results in Fig. 3 (from [ 5 ] )  show steps 
between failures versus failures for the sin- 
gle-layer network and for Michie and Cham- 
bers' BOXES system. The curves in the fig- 
ure are averaged over 10 experiments, each 
starting with the learning system in a com- 
pletely naive state and terminated either after 
100 failures or 500,000 action steps (a sim- 
ulated time of almost 3 hr). Balancing time 
increases with experience for both learning 
systems, but the networks attain a much 
longer balancing time, demonstrating the su- 
periority of the TD method of learning be- 
tween failures for this task. The final flatten- 
ing of the networks' curve is a ceiling effect 
due to the termination of runs longer than 
500,000 steps; the length of the final bal- 
ancing period for each run was assigned to 
the remaining failures. If run longer, this 
curve would continue to increase. After 
500,000 steps, the probability that the net- 
work will generate actions leading to failure 
becomes very small and continues to de- 
crease with additional experience. 
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Fig. 3. 
networks and BOXES using quantized 
representation of state space. 

Learning curves for single-layer 

Solution Using Two-Layer Networks 
In deciding how to divide the state space, 

one must strike a balance between generality 
and learning speed. A very fine quantization 
with many regions permits accurate approx- 
imation of complex functions, but learning 
the correct output for each of the many re- 
gions requires much experience. Learning 
can be faster with a coarse quantization be- 
cause learning for one state in a region is 
transferred to all states in the region, but 
only functions whose output remains rela- 
tively constant over regions can be repre- 
sented. Clearly, an adaptive representation 
that learns a quantization or other form of 
feature set based on experience is needed. It 
should learn to make fine discriminations 
among some states and coarse generaliza- 
tions among others, as appropriate for a given 
task. 

The experiments with two-layer networks 
by Anderson [6], described in this section, 
are a step in this direction. A second layer 
of adaptive units is added to the single units 
described in the previous section. The real- 
valued state variables are given as input to 
every unit in both layers, and the outputs 
from the new units become additional inputs 
to the original units. This structure is shown 
in Fig. 4. 

The original units are called the output 
units of the networks. The new units are 
called hidden units because their outputs do 
not have a direct effect on the network's en- 
vironment. Whereas output-unit learning can 
be based on evaluation differences, there is 
no analogous signal on which to base leam- 
ing in the hidden units. After assigning credit 
to an individual action, there remains the 
problem in a multilayer network of distrib- 
uting this credit among the hidden units that 
influenced the selection of that action by the 
output unit. 

This is one of the major problems that 
slowed developments in adaptive networks 
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after the original work in the 1950s and 
1960s. However, recent work has suggested 
that gradient descent techniques, even with 
the well-known problems of plateaus and lo- 
cal minima, may be feasible solutions to 
learning in hidden units for some problems. 
A gradient descent technique for learning in 
hidden units having particular nonlinear, dif- 
ferentiable, output functions has been stud- 
ied and given the name error back-propa- 
gation [18]. Anderson [6] used variants of 
error back-propagation to learn in the hidden 
units of the evaluation and action networks. 
The errors propagated to hidden evaluation 
units were based on the differences in the 
evaluation network's output, whereas errors 
for hidden action units were based on this 
difference and on which action was taken. 

The results of Anderson's two-layer ex- 
periments are shown in Fig. 5. The curves 
are averaged results of 10 experiments, each 
starting with a naive network and terminated 
after 10,OOO failures or 500,000 steps. The 
two-layer networks learned to balance the 
pendulum for an average of about 24 min of 
simulated real time, before runs were ter- 
minated at the 500,OOOth step. Single-layer 

networks, when given the state variables as 
input, were unable to learn to balance the 
pendulum, actually doing only slightly better 
than the nonlearning strategy of choosing ac- 
tions randomly with equal probability. Even 
though a good control law can be represented 
by the single-layer action network, the fact 
that the linear evaluation network cannot 
form useful evaluations prevented the con- 
trol law from being learned. 

A direct comparison between these results 
and the single-layer results of the previous 
section cannot be made. In the single-layer 
experiments, the state variables of the pen- 
dulum were reset to zero after every failure. 
When this was done for the two-layer ex- 
periments, the networks learned to balance 
the pendulum but did not learn to keep the 
cart in the center of the track. Generalization 
of what was learned in the center of the track 
prevented the learning of different, more ap- 
propriate, actions at the ends of the track. 
To ensure richer experience early in a train- 
ing run, the state variables were reset to ran- 
dom values after failure. With this change, 
the networks learned actions for centering 
the cart and for balancing the pendulum. An- 
other possible solution to this difficulty is to 
increase the importance of centering the cart 
by using a larger, more negative, failure sig- 
nal on bumping the tmck bounds relative to 
the failure signal for the pendulum exceeding 
its angular bounds. This was not tested. 

Analysis of what the networks have learned 
is aided by plotting output values of units as 
surfaces with respect to two of the four state 
variables. Plotting the output of the evalua- 
tion network with respect to 8 and e for fixed 
values of h and h ,  as shown in Fig. 6, pro- 
duces a surface with a ridge running from 
-8, +e to +8 ,  -4 with lowest values for 
-8, -e and +8, +e. This function ranks 
states for which the pendulum is moving to- 
ward vertical more favorable than other 

Hidden E v a l u a t i o n  
Units ,.....,"Network 

4 State Variables 
to Every Unit 
in Both Networks 

Inverted 
Pendulum 

Action 

..Action I 
N e t w o r k  

Stale Variables 

Fig. 4. Two-layer networks receiving unquantized state variables. 
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Fig. 5. Learning curves for two-layer and 
single-layer networks receiving unquantized 
state variables. 

states. The ridge is shifted for different val- 
ues of h and A :  when the cart is approaching 
the right end of the track (+h and + A ) ,  states 
for which the pendulum is to the left of ver- 
tical are evaluated more favorably than the 
states with the pendulum straight up. This is 
exactly what is required; the pendulum must 
be “balanced” a bit left of vertical to permit 
a larger proportion of pushes to the left to 
bring the pendulum back to the center of the 
track. The reverse situation exists on the left 
side of the track. 

To understand what is learned by the hid- 
den units, their outputs can be similarly plot- 
ted. Figure 7 shows the output of one hidden 

unit from the evaluation network. This unit 
has learned a function that is simply a pos- 
itively sloped ramp from -0, - 6  toward + 0 ,  
+ 6 ,  with the slope decreasing to zero near 
the midrange of 0 and b. The contribution 
that this unit makes to the evaluation net- 
work’s output depends on the value of the 
weight with which its output is connected to 
the output unit and on the values of the other 
output unit’s weights. Recall that, in addi- 
tion to the hidden units’ outputs, the output 
unit receives the four state variables as input. 
The output unit simply computes a weighted 
sum of its inputs, so can represent any linear 
function of the state variables and hidden 

V 

1  

I ~r 
0.2 

p“ V 

-1.0 

Fig. 6. Output of evaluation network. 

I 

h = 1.6 h = 1.0 

Fig. 7. Output of hidden unit in evaluation network. 

unit outputs. For the learning run from which 
these figures are generated, we find that the 
output unit has used the four state-variable 
inputs to form one side of the ridge in Fig. 
6 as a positive linear ramp from +8, +6 
toward -8, -6. The addition of the hidden 
unit’s output (Fig. 7) pulls down the -8 ,  
-4  comer of the evaluation network surface. 
This hidden unit function, which we can call 
afeature, is sufficient to form the ridge. In 
fact, all five hidden units tend to redundantly 
develop the same function. If more features 
were required, the hidden units would prob- 
ably develop different functions. 

The output of the action network is sto- 
chastic; therefore, its output is represented 
by the probability of an action being a push 
to the right. Figure 8 is a plot of this prob- 
ability. States for which the probability is 
near 1 will result mostly in pushes to the 
right, whereas pushes to the left will result 
from states for which the probability is near 
0. The surface shows a quick transition from 
left pushes to right pushes as the state shifts 
from -0, -6 to + 0 ,  +b .  This transition is 
analogous to a switching curve for a deter- 
ministic controller. The location of the tran- 
sition shifts as the cart’s position and veloc- 
ity change in order to maintain balance to 
the left of vertical when at the right side of 
the track and to the right of vertical when at 
the left side. 

The output unit of the action network can 
form the function in Fig. 8 without the aid 
of hidden units. The action network’s hidden 
units tend to evolve very little from their 
initial states and do not develop significant 
weights connecting them to the output unit. 

For different initial weight values and dif- 
ferent seeds for the random number gener- 
ator, the learned evaluation and action func- 
tions will differ only slightly. The hidden 
unit functions and weight values, however, 
do differ significantly. For example, for some 
runs, the hidden units of the evaluation net- 
work learn functions that provide the + 8 ,  
+e side of the evaluation hill with the output 
unit forming the -8, -e side as a function 
of the direct state-variable inputs, a dual so- 
lution to that shown in the preceding figures. 

Discussion 
In many real-world situations, a control 

objective cannot be expressed as a function 
defined over all states, but only for a rela- 
tively small subset of states. For some con- 
trol tasks, such a minimally defined objec- 
tive is perhaps even desirable. Requiring a 
controller to bring the value of a state vari- 
able as close to zero as possible when the 
true objective is just to avoid extreme values 
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might interfere wiih the control of other state 
variables. 

Learning from experience during periods 
of no performance feedback is dificult. 
Neural networks learning via reinforcement 
learning and temporal difference methods 
deal with this problem by simultaneously 
learning a probabilistic action-generating 
function and a state-evaluation function. This 
approach to the inverted pendulum task is 
unique; all other learning systems designed 
for this task assume more a priori knowl- 
edge, such as an explicit teacher providing 
correct actions 171, 191. The applicability of 
this approach to other tasks has been dem- 
onstrated by Helferty et al. [19] for a one- 
legged hopping machine and by Hoskins and 
Himmelblau [20] in a process control situa- 
tion. 

The difficulties of motor control and other 
low-level control tasks may yield to the care- 
ful application of neural network learning 
methods. The ability of neural networks to 
handle multiple-input and -output variables, 
nonlinear functions, and delayed feedback as 
well as their potential for fast, parallel im- 
plementation warrants further investigation 
of neural network learning methods in con- 
trol domains. It is important to realize that 
these methods are not special, magical, 
stand-alone techniques, but outgrowths of 
long lines of research in function approxi- 
mation, optimization, signal processing, and 
pattern classification, and can be combined 
with existing control techniques in straight- 
forward ways. For example, Miller 1211 and 
Franklin [22] have added networks trained 
by supervised and reinforcement learning 
methods, respectively, to refine the perfor- 
mance of predefined controllers. 

Experiments in learning control with neural 
networks may shed some light on how to 
deal with real-world uncertainties and com- 
plexities in control. However, many issues 
remain unresolved, such as how the perfor- 
mance of learning methods scales up to 
larger, more complex tasks than those cur- 
rently being studied. For more difficult prob- 
lems, a training cumculum progressing from 

simple to difficult parts of the problem might 
greatly reduce overall learning time [23]. 
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