
Learning to Control an Inverted
Pendulum Using Neural Networks

Charles W. Anderson

ABSTRACT: An inverted pendulum is sim-
ulated as a control task with the goal of
learning to balance the pendulum with no a
priori knowledge of the dynamics. In con-
trast to other applications of neural networks
to the inverted pendulum task, performance
feedback is assumed to be unavailable on
each step, appearing only as a failure signal
when the pendulum falls or reaches the
bounds of a horizontal track. To solve this
task, the controller must deal with issues of
delayed performance evaluation, learning
under uncertainty, and the learning of non-
linear functions. Reinforcement and tem-
poral-drference learning methods are pre-
sented that deal with these issues in order to
avoid unstable conditions and balance the
pendulum.

Introduction

The inverted pendulum is a classic ex-
ample of an inherently unstable system. Its
dynamics are basic to tasks involving the
maintenance of balance, such as walking and
the control of rocket thrusters. A number of
control design techniques have been inves-
tigated using the inverted pendulum [11-[4].
The successful application of these design
techniques requires considerable knowledge
of the system to be controlled, including an
accurate model of the dynamics of the sys-
tem and an expression of the system’s de-
sired behavior, usually in the form of an ob-
jective function.

How can control be accomplished when
such knowledge is not available? This ques-
tion is addressed here by considering the in-
verted pendulum control problem when the
dynamics are not known a priori and an an-
alytical objective function is not given. All
that is known are the values and ranges of
the state variables of the inverted pendulum
system and that a negative failure signal is
to be maximized over time. A function that
selects control actions given the current state

Presented at the 1988 American Control Confer-
ence, Atlanta, Georgia, June 15-17, 1988. Charles
W. Anderson is with the Self-Improving Systems
Department of GTE Laboratories, Inc., Waltham,
MA 02254.

of the pendulum must be learned through
experience by trying various actions and not-
ing the results, starting with no hints as to
which actions are correct.

Without an objective function to evaluate
states and actions, modifications to the con-
troller can be based only on the occurrence
of failure signals. A long sequence of actions
can develop before a failure signal is en-
countered, resulting in the difficult assign-
ment-ofcredit problem, where it is neces-
sary to decide which actions in the sequence
contributed to the failure.

In this paper, neural network learning
methods are described that learn to generate
successful action sequences by acquiring two
functions: an action function, which maps
the current state into control actions, and an
evaluation function, which maps the current
state into an evaluation of that state. The
evaluation function is used to assign credit
to individual actions. Two networks having
a similar structure are used to learn the action
and evaluation functions. They will be re-
ferred to as the action network and the eval-
uation network.

As shown in later sections, the desired
evaluation function for the inverted pendu-
lum task is nonlinear; a single-layer neural
network cannot form this map. One solution
to this problem is to transform the original
state variables into a new representation with
which a single-layer network can form the
evaluation function. Barto et al. [5] dem-
onstrated a quantization of the state space of
the inverted pendulum with which single-
layer networks could learn to balance the
pendulum. A second solution is to add a sec-
ond adaptive layer that learns such a repre-
sentation. Anderson [6] extended the work
of Barto et al. by applying a form of the
popular error back-propagation method to
two-layered networks that learn to balance
the pendulum given the actual state variables
of the inverted pendulum as input.

In this paper, the work of Barto et al. and
Anderson is summarized by discussing the
neural network structures and learning meth-
ods from a functional viewpoint and by pre-
senting the experimental results. First, the
inverted pendulum task and previous appli-
cations of neural networks to this task are
described.

Inverted Pendulum
The inverted pendulum task involves a

pendulum hinged to the top of a wheeled cart
that travels along a track, as shown in Fig.
1. The cart and pendulum are constrained to
move within the vertical plane. The state at
time t is specified by four real-valued vari-
ables: the angle between the pendulum and
vertical and the angular velocity (0, and 4,)
and the horizontal position and velocity of
the cart (h, and A,). The inverted pendulum
system was simulated using the following
equations of motion, where the units of 0,
h, and time t are radians, meters, and sec-
onds, respectively, and where g is the ac-
celeration due to gravity (9.8 m/sec2), F, the
output of the action network (k10 N), m,
the mass of the cart (1 .0 kg), m the mass of
the pendulum plus the cart (1.1 kg), and 1
the distance from the pivot to the pendulum’s
center of mass (0.5 m).

.. e, =

i;, = {F, + mpl[4f sin e, - 8, cos ~ , l } / m

This system was simulated by numerically
approximating the equations of motion using
Euler’s method with a time step of 7 = 0.02
sec and discrete-time state equations of the
form O[t + 1 1 = e[r] + ~ & [i] . The sampling
rate of the inverted pendulum’s state and the
rate at which control forces are applied are
the same as the basic simulation rate, i.e.,
50 Hz.

The goal of the inverted pendulum task is
to apply a sequence of right and left forces
of fixed magnitude to the cart such that the
pendulum is balanced and the cart does not
hit the edge of the track. A zero-magnitude

mg sin er - cos O , [F , + mP@ sin e,]
(413)ml - m,l cos’ 0,

Fig. 1 . The inverted pendulum.

April 1989 31

force is not permitted. Bounds on the angle
and on the cart’s horizontal position specify
the states for which a failure signal occurs.
There is no unique solution-any trajectory
through the state space that does not result
in a failure signal is acceptable. The only
information regarding the goal of the task is
provided by a failure signal, which signals
either the pendulum falling past + 12 deg or
the cart hitting the bounds of the track at
+2.4 m. These two kinds of failure are not
distinguishable in the case considered herein.

The goal as just stated makes this task very
difficult; the failure signal is a delayed and
rare performance measure. Before describ-
ing a solution to this formulation of the in-
verted pendulum task, we briefly discuss
other approaches that assume the existence
of additional task-specific knowledge.

A traditional control approach when the
dynamic equations of motion are known is
to assume that the control force F, is a linear
function of the four state variables (e,, e,, h,,
h,) with constant coefficients b , , . . . , bq:

F, = b,O, + b2e, + b3h, + b4h,

The coefficients b, are chosen to stabilize the
linearized version of the system differential
equations for 0, and h, small in magnitude.
This is the approach followed by Cheok and
Loh [I] in a similar problem; they use linear
feedback in three (of the four) variables to
obtain stable control for a ball-balancing ex-
periment. The success of this approach de-
pends heavily on the match between the ac-
tual system dynamics and the linearized
approximation.

The earliest application of neural networks
to the inverted pendulum task is that of Wid-
row and Smith [7] and Widrow [8]. They
approached the problem as described earlier,
using traditional control methods to derive a
control law to stabilize the linearized system
for small 8, and h,. Then they trained a net-
work to mimic the output of the control law
by observing the input-output behavior of the
control law as it balanced the pendulum.
Guez and Selinsky [9] extended this ap-
proach to include multilayer networks trained
by observing a nonlinear control law.

When the dynamics are not known, it is
necessary to use some adaptive or learning
approach to obtain a stable control, which is
some unknown function U of the four state
variables:

F, = we,, e,, h,, A,)
With unknown dynamics, a controller cannot
be designed to provide examples of desired
behavior. A human controller who is able to
stabilize an inverted pendulum is an alter-

native source of desired behavior, as dem-
onstrated by Widrow and Smith [7] , [8] and
Guez and Selinsky [9]. Tolat and Widrow
[IO] provide a third demonstration of train-
ing with a human controller, with the novel
use of feedback based on pixel values de-
rived from a visual image of the pendulum
location rather than the pendulum’s state
variables.

If neither a designed controller nor a hu-
man expert is available, learning must be
guided by some measure of actual perfor-
mance. For example, Connell and Utgoff
[111 measured performance by the distance
from the current state to the (0, 0, 0 , O) state,
taking the action on each step that most re-
duced this difference. As is the case for tra-
ditional control methods, this amounts to
adding the knowledge that the system must
be stabilized about a particular state. Rosen
et al. [12] assumed a different type of knowl-
edge, the knowledge that the inverted pen-
dulum task is a failure-avoidance task. For
avoidance tasks, longer trajectories through
state space between failures are more desir-
able, so Rosen et al. identified actions that
resulted in cycles in state space as the pre-
ferred actions.

The only performance measure present in
our formulation of the inverted pendulum
task is the failure signal. The approach to
this task, as summarized in the next two sec-
tions, is an example of how successful con-
trol can be learned when limited task-specific
information is available.

Solution Using Two
Single-Layer Networks

The architecture of a network and the
computations performed by each unit specify
a function from input to output vectors. The
function is parameterized by the numerical
connection weights between units and on the
inputs to the network. The function is altered
by a learning method that adjusts the values
of the weights.

Learning can be based on several forms of
evaluative feedback (see Hinton [I31 for a
review). Supervised learning methods, the
most commonly used in neural networks, re-
quire a training set of data consisting of input
vectors and corresponding desired output
vectors. Such methods cannot be applied to
tasks for which the desired output of the net-
work is not known. The inverted pendulum,
as we have defined it, is such a task: the
correct action for most states is not even well-
defined, since many trajectories are possible
that indefinitely avoid failure.

If the desired output is not available, the
performance of the network must be evalu-

ated indirectly by considering the effect of
its output on the environment with which the
network interacts. Reinforcement learning
methods can be applied when this effect is
measured by changes in an evaluation signal,
or reinforcement-a term borrowed from
theories of animal learning from which re-
inforcement learning methods originated

Next we describe the experiments by Barto
et al. [5] involving two single-layer net-
works. See Sutton [15] for a more thorough,
extended treatment of this approach to the
inverted pendulum task and of reinforcement
learning methods in general.

We distinguish the two networks by call-
ing one the action network and the other the
evaluation network. The action network
learns to select actions as a function of states.
It consists of a single unit having two pos-
sible outputs, one for each of the two allow-
able control actions of pushing left or right
on the cart with a fixed-magnitude force. The
output of the unit is probabilistic-the prob-
ability of generating each action depends on
the weighted sum of the unit’s inputs, i.e.,
the inner product of the input vector and the
unit’s weight vector.

Initial values of the weights are zero, mak-
ing the two actions equally probable. The
action unit learns via a reinforcement learn-
ing method. It tries actions at random and
makes incremental adjustments to its
weights, and, thus, to its action probabili-
ties, after receiving nonzero reinforcements.
The only nonzero reinforcement present in
the inverted pendulum task is a failure sig-
nal. Learning good actions is extremely slow
when based on this rare and delayed signal.

A second mechanism is needed to appor-
tion the blame for the failure among the ac-
tions in the sequence leading to the failure.
This mechanism is provided by the evalua-
tion network, which also consists of a single
unit. The evaluation unit learns the expected
value of a discounted sum of future failure
signals by means of a temporal-difference,
or TD, method of prediction, developed by
Sutton [161. TD methods learn associations
among signals separated in time, such as the
inverted pendulum state vectors and failure
signals. Through learning, the output of the
evaluation network comes to predict the fail-
ure signal, with the strength of the prediction
indicating how soon failure can be expected
to occur. The predictions are adjusted after
each step by an amount proportional to the
network’s input and the difference between
the new prediction, based on the current state
of the inverted pendulum, and the previous
prediction, based on the previous state, i.e.,
the temporal difference or change in predic-

~ 4 1 .

32 IEEE Control Systems Mogozine

tion of failure. This sequence of prediction
changes ends with the occurrence of failure,
and the final prediction change is dependent
on the difference between the failure signal
and the previous prediction. Convergence
theorems for the TD class of algorithms have
been proven by Sutton [16]. Ongoing work
by Sutton includes the investigation of rela-
tionships between TD methods and dynamic
programming.

The output of the evaluation unit is the
inner product of the input vector and the
unit's weight vector. Assuming the input
vector is a representation of the inverted pen-
dulum's state (discussed subsequently) and
that the weights are developed by the TD
method, the scalar output of the evaluation
unit provides a ranking of the states. The
difference in the unit's output on the transi-
tion from one state to another is used to judge
the effectiveness of the previous action. An
increase in the evaluation signifies a transi-
tion to a state having a weaker prediction of
failure and that the probability of the pre-
ceding action should be increased. Similarly,
the probability of repeating an action that
precedes an evaluation decrease should be
lowered. In this way, the change in the eval-
uation network's output serves as a rein-
forcement during the possibly long periods
between failures. However, the learned eval-
uation function is not always helpful, partic-
ularly before much experience has been
gained. The learning methods for updating
both the evaluation and action networks must
deal with this uncertainty.

The performance of any learning system
is highly dependent on its input representa-
tion. The four real-valued state variables are
an adequate representation for the action unit,
since the optimal control law for a similar
inverted pendulum task is linear and can be
approximated by the stochastic action unit.
However, using this representation would
prevent the evaluation unit from being able
to form a good prediction of failure for the
following reason.

Consider evaluations as a function of just
8 and 0 , the pendulum's angle and angular
velocity. The failure signal is defined to have
the value -1 on failure and 0 for all other
states. A failure occurs when the value of 8
is less than - 12 deg or greater than 12 deg.
States that occur just prior to failure typically
have either high 8 and high 8 , or low 8 and
low 0 , i.e., the pendulum is falling in the
same direction in which it is leaning. These
states should produce an evaluation near - I ,
a strong prediction of failure. Other states,
such as those for which the pendulum is
moving toward the balanced position, should
have an evaluation closer to 0, a weak pre-

diction of failure. Thus, the shape of this
evaluation function as the state moves from
-8, -0 to +8, + e is nonmonotonic, first
rising from - 1 toward 0, then falling back
toward - 1 .

Since the output of the evaluation unit is
a linear function of its input, this evaluation
function cannot be formed. A different rep-
resentation of the state must be used for
which this function is linear. One alternative
is to adopt a table lookup strategy and divide
the state space into discrete, nonoverlapping
regions, associating a unique input compo-
nent and weight with each region. The input
components then could be binary-valued,
with only one being nonzero at a time, sig-
naling which region the current state of the
pendulum is in. A unique evaluation can be
assigned to each region by adjusting the cor-
responding weight, approximating any func-
tion to an accuracy determined by the
coarseness of the state-space partitioning.

The experiments described here were mo-
tivated by the work of Michie and Chambers
[17], who devised a learning system called
BOXES which learned to control an inverted
pendulum using a state representation of dis-
crete regions as described earlier. To com-
pare with the performance of the BOXES
learning system, the same representation was
used. The regions of the state space were
formed by the intersections of six intervals
along the 8 dimension and three intervals
along the 4, h, and h dimensions, making a
total of 162 regions. The resulting networks
are shown in Fig. 2. Each unit receives the
162 binary input components, and the eval-
uation unit's output directs the learning pro-
cess for both units.

The primary purpose of these experiments
was to compare the learning performances
of the TD prediction method (called the
Adaptive Critic in [5]) and the method used
by Michie and Chambers to assign credit to
actions. The key difference between the
methods is that Michie and Chambers used
counters in each region to remember past
states and times between state occurrences
and failure, and that learning occurred only
on failure. The TD method allows learning
to occur continuously using the learned eval-
uation function and differences in its output
as reinforcement, rather than waiting for fur-
ther failures.

The results in Fig. 3 (from [5]) show steps
between failures versus failures for the sin-
gle-layer network and for Michie and Cham-
bers' BOXES system. The curves in the fig-
ure are averaged over 10 experiments, each
starting with the learning system in a com-
pletely naive state and terminated either after
100 failures or 500,000 action steps (a sim-
ulated time of almost 3 hr). Balancing time
increases with experience for both learning
systems, but the networks attain a much
longer balancing time, demonstrating the su-
periority of the TD method of learning be-
tween failures for this task. The final flatten-
ing of the networks' curve is a ceiling effect
due to the termination of runs longer than
500,000 steps; the length of the final bal-
ancing period for each run was assigned to
the remaining failures. If run longer, this
curve would continue to increase. After
500,000 steps, the probability that the net-
work will generate actions leading to failure
becomes very small and continues to de-
crease with additional experience.

Four
State

Evaluat ion
N e t w o r k

Failure Signal
_ _ _ _ _ - _ _ - _

n
State
Evaluation

Inverted
Pendulum
System

Action

: ,..... Act ion

162
Variables -

0

N e t w o r k c - - - - - - - - - -!"""

State
Evaluation

Inverted
Pendulum
System

Action

162
Variables -

0

N e t w o r k

State Variables
Fig. 2 . Single-layer networks with state-space quantization.

State Variables
Fig. 2 . Single-layer networks with state-space quantization.

Aprii 1989 33

I f i
80,000- Single-Layer Networks

with f Quantized Representation I of State Space
Time

! Steps

Failure
until 40.000 BOXES

Michie and I Chambers'
Learning System

0 2 5 5 0 7 5 1 0 0
Failures

Fig. 3.
networks and BOXES using quantized
representation of state space.

Learning curves for single-layer

Solution Using Two-Layer Networks
In deciding how to divide the state space,

one must strike a balance between generality
and learning speed. A very fine quantization
with many regions permits accurate approx-
imation of complex functions, but learning
the correct output for each of the many re-
gions requires much experience. Learning
can be faster with a coarse quantization be-
cause learning for one state in a region is
transferred to all states in the region, but
only functions whose output remains rela-
tively constant over regions can be repre-
sented. Clearly, an adaptive representation
that learns a quantization or other form of
feature set based on experience is needed. It
should learn to make fine discriminations
among some states and coarse generaliza-
tions among others, as appropriate for a given
task.

The experiments with two-layer networks
by Anderson [6], described in this section,
are a step in this direction. A second layer
of adaptive units is added to the single units
described in the previous section. The real-
valued state variables are given as input to
every unit in both layers, and the outputs
from the new units become additional inputs
to the original units. This structure is shown
in Fig. 4.

The original units are called the output
units of the networks. The new units are
called hidden units because their outputs do
not have a direct effect on the network's en-
vironment. Whereas output-unit learning can
be based on evaluation differences, there is
no analogous signal on which to base leam-
ing in the hidden units. After assigning credit
to an individual action, there remains the
problem in a multilayer network of distrib-
uting this credit among the hidden units that
influenced the selection of that action by the
output unit.

This is one of the major problems that
slowed developments in adaptive networks

34

after the original work in the 1950s and
1960s. However, recent work has suggested
that gradient descent techniques, even with
the well-known problems of plateaus and lo-
cal minima, may be feasible solutions to
learning in hidden units for some problems.
A gradient descent technique for learning in
hidden units having particular nonlinear, dif-
ferentiable, output functions has been stud-
ied and given the name error back-propa-
gation [18]. Anderson [6] used variants of
error back-propagation to learn in the hidden
units of the evaluation and action networks.
The errors propagated to hidden evaluation
units were based on the differences in the
evaluation network's output, whereas errors
for hidden action units were based on this
difference and on which action was taken.

The results of Anderson's two-layer ex-
periments are shown in Fig. 5. The curves
are averaged results of 10 experiments, each
starting with a naive network and terminated
after 10,OOO failures or 500,000 steps. The
two-layer networks learned to balance the
pendulum for an average of about 24 min of
simulated real time, before runs were ter-
minated at the 500,OOOth step. Single-layer

networks, when given the state variables as
input, were unable to learn to balance the
pendulum, actually doing only slightly better
than the nonlearning strategy of choosing ac-
tions randomly with equal probability. Even
though a good control law can be represented
by the single-layer action network, the fact
that the linear evaluation network cannot
form useful evaluations prevented the con-
trol law from being learned.

A direct comparison between these results
and the single-layer results of the previous
section cannot be made. In the single-layer
experiments, the state variables of the pen-
dulum were reset to zero after every failure.
When this was done for the two-layer ex-
periments, the networks learned to balance
the pendulum but did not learn to keep the
cart in the center of the track. Generalization
of what was learned in the center of the track
prevented the learning of different, more ap-
propriate, actions at the ends of the track.
To ensure richer experience early in a train-
ing run, the state variables were reset to ran-
dom values after failure. With this change,
the networks learned actions for centering
the cart and for balancing the pendulum. An-
other possible solution to this difficulty is to
increase the importance of centering the cart
by using a larger, more negative, failure sig-
nal on bumping the tmck bounds relative to
the failure signal for the pendulum exceeding
its angular bounds. This was not tested.

Analysis of what the networks have learned
is aided by plotting output values of units as
surfaces with respect to two of the four state
variables. Plotting the output of the evalua-
tion network with respect to 8 and e for fixed
values of h and h , as shown in Fig. 6, pro-
duces a surface with a ridge running from
-8, +e to +8 , -4 with lowest values for
-8, -e and +8, +e. This function ranks
states for which the pendulum is moving to-
ward vertical more favorable than other

Hidden E v a l u a t i o n
Units ,.....,"Network

4 State Variables
to Every Unit
in Both Networks

Inverted
Pendulum

Action

..Action I
N e t w o r k

Stale Variables

Fig. 4. Two-layer networks receiving unquantized state variables.

/ E € € Control Systems Mogorrne

ooooo I I--

~

1
1

Y5

0.5
-1

I y5

Time
Steps
Until

Failure

1000

Y5

Log
Scale

10

Two-Layer Networks
Receiving Four
State Variables

Single-Layer Networks
Receiving Four
Stale Variables \\\\\\\\.\\\......\\\\\\\\\\\\\\\\\\\

Random Actions
(No Learning)

1 J ! I

0 5,000 10,000
Failures

Fig. 5. Learning curves for two-layer and
single-layer networks receiving unquantized
state variables.

states. The ridge is shifted for different val-
ues of h and A : when the cart is approaching
the right end of the track (+h and + A) , states
for which the pendulum is to the left of ver-
tical are evaluated more favorably than the
states with the pendulum straight up. This is
exactly what is required; the pendulum must
be “balanced” a bit left of vertical to permit
a larger proportion of pushes to the left to
bring the pendulum back to the center of the
track. The reverse situation exists on the left
side of the track.

To understand what is learned by the hid-
den units, their outputs can be similarly plot-
ted. Figure 7 shows the output of one hidden

unit from the evaluation network. This unit
has learned a function that is simply a pos-
itively sloped ramp from -0, - 6 toward + 0 ,
+ 6 , with the slope decreasing to zero near
the midrange of 0 and b. The contribution
that this unit makes to the evaluation net-
work’s output depends on the value of the
weight with which its output is connected to
the output unit and on the values of the other
output unit’s weights. Recall that, in addi-
tion to the hidden units’ outputs, the output
unit receives the four state variables as input.
The output unit simply computes a weighted
sum of its inputs, so can represent any linear
function of the state variables and hidden

V

1

I ~r
0.2

p“ V

-1.0

Fig. 6. Output of evaluation network.

I

h = 1.6 h = 1.0

Fig. 7. Output of hidden unit in evaluation network.

unit outputs. For the learning run from which
these figures are generated, we find that the
output unit has used the four state-variable
inputs to form one side of the ridge in Fig.
6 as a positive linear ramp from +8, +6
toward -8, -6. The addition of the hidden
unit’s output (Fig. 7) pulls down the -8 ,
-4 comer of the evaluation network surface.
This hidden unit function, which we can call
afeature, is sufficient to form the ridge. In
fact, all five hidden units tend to redundantly
develop the same function. If more features
were required, the hidden units would prob-
ably develop different functions.

The output of the action network is sto-
chastic; therefore, its output is represented
by the probability of an action being a push
to the right. Figure 8 is a plot of this prob-
ability. States for which the probability is
near 1 will result mostly in pushes to the
right, whereas pushes to the left will result
from states for which the probability is near
0. The surface shows a quick transition from
left pushes to right pushes as the state shifts
from -0, -6 to + 0 , +b . This transition is
analogous to a switching curve for a deter-
ministic controller. The location of the tran-
sition shifts as the cart’s position and veloc-
ity change in order to maintain balance to
the left of vertical when at the right side of
the track and to the right of vertical when at
the left side.

The output unit of the action network can
form the function in Fig. 8 without the aid
of hidden units. The action network’s hidden
units tend to evolve very little from their
initial states and do not develop significant
weights connecting them to the output unit.

For different initial weight values and dif-
ferent seeds for the random number gener-
ator, the learned evaluation and action func-
tions will differ only slightly. The hidden
unit functions and weight values, however,
do differ significantly. For example, for some
runs, the hidden units of the evaluation net-
work learn functions that provide the + 8 ,
+e side of the evaluation hill with the output
unit forming the -8, -e side as a function
of the direct state-variable inputs, a dual so-
lution to that shown in the preceding figures.

Discussion
In many real-world situations, a control

objective cannot be expressed as a function
defined over all states, but only for a rela-
tively small subset of states. For some con-
trol tasks, such a minimally defined objec-
tive is perhaps even desirable. Requiring a
controller to bring the value of a state vari-
able as close to zero as possible when the
true objective is just to avoid extreme values

April 1989 35

P

1 h = 0.0 LA: 0.0 I h= -1.6 k = -1.0 1 h = 1.6 = 1.0

I I 1

1
P

0.5

0
-1

P

Fig. 8. Output of action network.

might interfere wiih the control of other state
variables.

Learning from experience during periods
of no performance feedback is dificult.
Neural networks learning via reinforcement
learning and temporal difference methods
deal with this problem by simultaneously
learning a probabilistic action-generating
function and a state-evaluation function. This
approach to the inverted pendulum task is
unique; all other learning systems designed
for this task assume more a priori knowl-
edge, such as an explicit teacher providing
correct actions 171, 191. The applicability of
this approach to other tasks has been dem-
onstrated by Helferty et al. [19] for a one-
legged hopping machine and by Hoskins and
Himmelblau [20] in a process control situa-
tion.

The difficulties of motor control and other
low-level control tasks may yield to the care-
ful application of neural network learning
methods. The ability of neural networks to
handle multiple-input and -output variables,
nonlinear functions, and delayed feedback as
well as their potential for fast, parallel im-
plementation warrants further investigation
of neural network learning methods in con-
trol domains. It is important to realize that
these methods are not special, magical,
stand-alone techniques, but outgrowths of
long lines of research in function approxi-
mation, optimization, signal processing, and
pattern classification, and can be combined
with existing control techniques in straight-
forward ways. For example, Miller 1211 and
Franklin [22] have added networks trained
by supervised and reinforcement learning
methods, respectively, to refine the perfor-
mance of predefined controllers.

Experiments in learning control with neural
networks may shed some light on how to
deal with real-world uncertainties and com-
plexities in control. However, many issues
remain unresolved, such as how the perfor-
mance of learning methods scales up to
larger, more complex tasks than those cur-
rently being studied. For more difficult prob-
lems, a training cumculum progressing from

simple to difficult parts of the problem might
greatly reduce overall learning time [23].

Acknowledgments
This work was partially supported by the

Air Force Office of Scientific Research and
the Avionics Laboratory (Air Force Wright
Aeronautical Laboratories) through Contract
F33615-83-C-1078.

References
I] K. C. Cheok and N. K. Loh, “A Ball-Bal-

ancing Demonstration of Optimal and Dis-
turbance-Accommodating Control,” IEEE
Contr. Syst. Mag., vol. 7, no. 1, pp. 54-
57, Feb. 1987.

21 E. Eastwood, “Control Theory and the En-
gineer,” Proc. IEE, vol. 115, no. 1, pp.
203-211, Jan. 1968.

[31

[41

[71

R. H. Cannon, Jr., Dynamics of Physical
Systems, McGraw-Hill, 1967.
J. K. Roberge, “The Mechanical Seal,”
S.B. Thesis, Massachusetts Institute of
Technology, Cambridge, MA, May 1960.
A. G. Barto, R. S. Sutton, and C. W. An-
derson, “Neuronlike Adaptive Elements
That Can Solve Difficult Learning Control
Problems,” IEEE Trans. Syst., Man, Cy-
bern., vol. SMC-13, pp. 834-846, Sept.-
Oct. 1983.
C. W. Anderson, “Strategy Learning with
Multilayer Connectionist Representations,”
Tech. Rept. TR87-509.3, GTE Laborato-
ries, Waltham, MA, 1987. (This is a cor-
rected version of the report published in
Proc. Fourth International Workshop on
Machine Learning, Irvine, CA, pp. 103-
114, June 1987.)
B. Widrow and F. W. Smith, “Pattern-
Recognizing Control Systems,’’ 1963 Com-
puter and Information Sciences (COINS)
Symp. Proc., Washington, DC: Spartan, pp.

B. Widrow, “The Original Adaptive Neural
Net Broom-Balancer,” Inr. Symp. Circuits
and Syst., pp. 351-357, May 1987.
A. Guez and J. Selinsky, “A Trainable
Neuromorphic Controller,” J . Robotic
Syst., vol. 5 , no. 4, pp. 363-388, Aug.
1988.
V. V. Tolat and B. Widrow, “An Adaptive
‘Broom Balancer’ with Visual Inputs,”

288-317, 1964.

Proc. IEEE Int. Con$ on Neural Networks,
San Diego, CA, pp. 11-64-11-647, July
1988.
M. E. Connell and P. E. Utgoff, “Learning
to Control a Dynamic Physical System,”
Proc. M I - 8 7 , vol. 2 , pp. 456-460, Amer-
ican Association for Artificial Intelligence,
Seattle, WA, 1987.
B. E. Rosen, J. M. Goodwin, and J. J. Vi-
dal, “State Recurrence Learning,” First
Annual Int. Neural Network Society Meet-
ing, Boston, MA, Sept. 1988 (abstract ap-
pears in Neural Networks, vol. 1, Suppl. 1,
p. 48, 1988).
G. E. Hinton, “Connectionist Learning
Procedures,” Tech. Rept. CMU-CS-87-
115, Carnegie-Mellon Univ., Pittsburgh,
PA, 1987; to appear in Artificial Intelli-
gence.
R. S. Sutton and A. G. Barto, “Toward a
Modem Theory of Adaptive Networks: Ex-
pectation and Prediction,” Psychol. Rev.,
vol. 88, no. 2, pp. 135-170, 1981.
R. S. Sutton, “Temporal Credit Assign-
ment in Reinforcement Learning,” Doc-
toral Dissertation, COINS Tech. Rept. 84-
02, Univ. of Massachusetts, Amherst, 1984.
R. S . Sutton, “Learning to Predict by the
Methods of Temporal Differences,” Ma-
chine Learning, vol. 3, pp. 9-44, 1988.
D. Michie and R. A. Chambers, “BOXES:
An Experiment in Adaptive Control,” Ma-
chine Intelligence 2 , E. Dale and D. Mi-
chie, eds., Edinburgh: Oliver and Boyd, pp.

D. E. Rumelhart, G. E. Hinton, and R. W.
Williams, “Learning Internal Representa-
tions by Error Propagation,” in Parallel
Distributed Processing: Explorations in the
Microstructure of Cognition, Volume I :
Foundations, D. E. Rumelhart, J . L.
McClelland, and The PDP Research Group,
Cambridge, MA: Bradford, 1986.
J. J. Helferty, J. B. Collins, and M. Kam,
“A Learning Strategy for the Control of a
Mobile Robot That Hops and Runs,” Proc.
IASTED-88, Galveston, TX, pp. 7-1 1, In-
ternational Association of Science and
Technology for Development. 1988.
J. C. Hoskins and D. M. Himmelblau,
“Automatic Chemical Process Control
Using Reinforcement Learning in Artificial
Neural Networks,” First Annual Int. Neural
Network Society Meeting, Boston, MA,
Sept. 1988 (abstract appears in Neural Net-
w o r k , vol. 1, Suppl. 1, p. 446, 1988).
W. T. Miller, “Sensor-Based Control of
Robotic Manipulators Using a General
Learning Algorithm,” IEEE J . Robotics
Automat., vol. RA-3, no. 2, pp. 157-165,
Apr. 1987.
J. A. Franklin, “Learning Control in a Ro-
botic System,” Proc. IEEE Int. Con$ Syst.,
Man, Cybern., Alexandria, VA, pp. 466-
470, Oct. 1987.
0. G . Selfridge, R. S. Sutton, and A. G. Barto
“Training and Tracking in Robotics,” Proc.

137-152, 1968.

IJCAI-BS, pp. 670-672.

36 I E E E Control Systems Mogozrne

Charles W. Anderson
received the B.S. degree
in computer science from
the University of Ne-
braska in 1978 and the
M.S. and Ph.D. degrees
in computer science from
the University of Massa-
chusetts, Amherst, in
1982 and 1986, respec-
tively. He is currently a
Senior Member of the
Technical Staff in the Self-

Improving Systems Department of GTE Labora-
tones, Waltham, Massachusetts, where he is
studying learning methods for multilayer connec-
tionist networks with a focus on learning methods
for control domains, including problems in pro-
cess and robotic control. In addition to connec-
tionist learning methods and control, his interests
include optimization, pattern classification, com-
puter graphics, and simulation.

Doctoral Dissertations 2
The information about doctoral disserta-

tions should be typed double-spaced using
the following format and sent to:

Prof. Bruce H. Krogh
Dept. of Electrical and Computer Engrg.
Carnegie-Mellon University
Pittsburgh, PA 15213

Ohio State University
Iftar, Altug, “Robust Controller Design for

Large Scale Systems.”
Date: August 1988.
Supervisor; Umit Ozgiiner.
Current Address: Department of Electrical

Engineering, University of Toronto, Toron-
to, Ontario M5S 1A4, Canada.

Ohio State University
Barbieri, Enrique, “Modelling and Control of

Planar Flexible Structures with Applica-
tion to an Optical ‘Ikacking System.”

Date: September !988.
Supervisor: Umit Ozgiiner.
Current Address: Department of Electrical

Engineering, Tulane University, 204 Stan-
ley Thomas Hall, New Orleans, LA
701 18-5674.

University of Texas at Austin
Cho, Hangju, “Suprema1 and Maximal Sub-

languages Arising in Supervisor Synthesis
Problems with Partial Observations.”

Date: August 1988.
Supervisor Steven I. Marcus.
Current Address: Agency for Defense Devel-

opment (2-2-21, Daejeon, P.O. Box 35,
Daejeon, South Korea.

Swiss Federal Institute of Technology, Zurich,
Switzerland

Constantinescu, I., “On the Asymptotic Eigen-
structure of Multivariable Systems with
High Feedback Gain.”

Date: March 1988.
Supervisor: Hans P. Geering.
Current Address: Measurement and Control

Laboratory, Swiss Federal Institute of
Technology, ETH-Zentrum, 8092 Zurich,
Switzerland.

University of New Mexico
Park, Hong Bae, “Nominal HZFeedback Sys-

tem Optimization with Simultaneous Sta-
bilization Constraints.”

Date: May 1988.
Supervisor: Peter Dorato.
Current Address: Department of Electronics,

Kyungpook National University, Taegu,
Korea 702-701.

University of New Mexico
Park, Hong Bae, “Nommal, HZ Feedback

Optimization with Simultaneous Stabiliza-
tion Constraints.”

Date: August 1988.

Supervisor: Peter Dorato.
Current Address: Deparbnent of Electronics,

Kyungpook National University, Taegu
635, Korea.

Purdue University
King, Andrew, “Discretization and Model

Reduction for a Class of Nonlinear Sys-
tems.”

Date: August 1988.
Supervisor: R. E. Skelton.
Current Address: Hughes Aircraft Company,

P.O. Box 92919, Los Angeles, CA 90009.

Purdue University
Hu, Anren, “Modal Cost Analysis of Flexible

Structures for Control Design.”

Date: January 1988.
Supewisor: R. E. Skelton.
Current Address: Dynacs Engineering Com-

pany, 2280 US 19 North, Clearwater, FL
33575.

Purdue University
Collins, Emmanuel, “State Covariance As-

Date: May 1987.
Supervisor: R. E. Skelton.
Current Address: Harris Corporation, P.O. Box

signment of Discrete Systems.”

137, Melbourne, FL 32901.

University of Manchester Institute of Science
& Technology
Muha, P.A., “Incorporation of an Expert Sys-

tem into an Existing Computer-Aided Con-
trol Systems Design Package.”

Date: June 1988.
Supervisor Dr. P. A. Cook.
Current Address: Engineering Faculty, Univer-

siti Kebangsaan Malaysia, 43600 UKM,
Bangi, Malaysia.

University of Cambridge
Lam, James, “Model Reduction of Delay Sys-

Date: March 1988.
Supervisor Keith Glover.
Current Address: Department of Applied

Mathematics, City Polytechnic of Hong
Kong, Nathan Road, Hong Kong.

tems.”

University of Tennessee
McCullough, Claire L., “Error Consider-

Date: June 1988.
Supervisor: Dr. J. Douglas Birdwell.
Current Address: Department of Electrical &

Computer Engineering, University of Ala-
bama in Huntsville, Huntsville, AL 35899.

ations in Distributed Estimation.”

37

