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ABSTRACT 

The use of externally imposed hierarchical structures to reduce the complexity of learning control 
is common. However it is clear that the learning of the hierarchical structure by the machine itself 
is an important step towards more general and less bounded learning. Presented in this paper is a 
nested Q-learning technique that generates a hierarchical control structure as the robot interacts with its 
world. These emergent structures combined with learned bottom-up reactive reactions result in a flexible 
hierarchical control system. 

1. Introduction 

The use of Q-learning [l] and other related reinforcement learning techniques is common for the control of 
autonomous robots [2]. However, long learning times combined with the slow speed (when compared to simulations) 
and the frailties of robot hardware present considerable problems when scaling up to real applications. Often, to 
reduce the problem to a more tractable size, the control task is hand decomposed into a hierarchical structure [3]. This 
abstracts the problem into many smaller, more easily learned control problems. However, this hand decomposition 
imposes the designer’s preconceived notions on the robot which, from the robot’s own sensors and actuators point 
of view, may be inefficient or incorrect. Furthermore, it is acknowledged that for truly general learning and full 
autonomy in the face of unknown and changing environments, the structure of the hierarchical control system must 
be learned. 

Once the structure has been learned, skills that have been mastered in previous situations can be used in future 
tasks and environments. This continual carrying forward of learned information is called life long learning and 
provides the robot a head start at learning new tasks [4] [5].  As the robot moves from task to  task and environment 
to environment it will have the accumulated information of its past experiences available to it as skills. These 
transportable skills will allow the robot to learn progressively more complex tasks. Eventually this continual learning 
will allow for the learning of tasks that would be impossible in a simple monolithic network. The use of pre-training 
nested &-Learning controlled robots using scaffolding actions and staged learning as well as online skill transfer 
between task/environment settings is discussed further elsewhere [4] [5]. 

2. Nested Q-learning for Emergent Control Structures 

Consider the example of a robot receiving sensations from its sensors and internal and external reinforcements 
as pictured schematically in Figure 1 (a). This robot is capable of acting on its world using a number of primitive 
actuator movements. These primitive actions are at the simplest level of the robot’s actuators and although they 
may utilize feedback control mechanisms, they do not embody any higher intelligence. This robot also receives 
reinforcement signals which are a critical indicator of how the robot is progressing with respect to  the completion of 
some desired task(s). These critical signals are all the direction that can be assumed for an autonomous robot. The 
critical error signals simply provide negative reinforcement when the actions of the robot do not achieve the task and 
positive (favorable) reinforcement whenever the actions achieve the goal. 

In the field of intelligent control, the control strategies connecting the sensors to the actions are either hardwired 
by a designer, they are taught to  the agent via a teacher or are left to  be learned by the agent. There are many 
variations of architectures in which the control systems maybe implemented. The two main variations are flat and 
hierarchical as shown schematically in Figure 1 (b) (1) and (2), respectively. Note that the hierarchical control system 
relies upon higher level skills being built upon lower level skills while the flat architecture contains only skills at a 
single level interacting directly with the actuators. 
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1 
Note  the sensor connections are not shown. 

(1) Flat control structure. (2) Hierarchical control sti'ucture. 

(a) Control schematic. (b) Flat and Hierachical control structures. 

Fig. 1: Schematic of control architectures: (a) sensory, action and reinforcement signal configuration for a learning (control system and 
(b) control architectures: (1) flat structure and (2) hierarchical structure. 

A method will now be presented that will allow for the autonomous generation of hierarchical control structures 
as pictured in Figure 1 (b) (2). Consider the control system schematic of Figure 1 (a). Each incoming sensor 
has a finite number of perceivable distinct states. These distinct states can be imposed to  be evenly distributed 
or exist as some fuzzy quantity. Eventually, it is planned to  have these features refined using some continuous 
adaption scheme piggy-backed upon this structural learning method. In t,his paper an even distribution of features 
over the range of the sensor will be assumed. For sensor s, these features are represented by the distinct values, 
s, E [ SA, s;,... s;, SF 3 ,  where s, is the nth sensor, SF,  is the mth distinct value and M ,  is the 
number of distinct values for sensor n. For any number of incoming seinsors their distinct values or recognizable 
sensory conditions will constitute features. These features may or may not prove useful in controlling the agent. 
These features are defined over all distinctive values for all sensors, fi e [ . . . 
where fi is the i th distinct feature and N is the number of sensors. 

A &-learning evaluation function is now defined for each distinct feature, Qfi. With features defined as rec- 
ognizable sensory conditions, skills become the control strategies requi:red to  provide the actions to reach each 
feature. Eventually the lowest level primitive actions are needed to be invoked by the learned control strategies 
in an attempt to reach the desired feature. These primitive actions are the simple low level actuator movements 
that act on the world. They may themselves contain some form of feedback control mechanisms, but remain the 
simple building blocks out of which complex control strategies (skills) can be built. These actions are represented as 
a,  E [ a l ,  a2, ... a N  1,  where a,  is a primitive action and N is the number of primitive actions. 

Each feature, f i ,  is by definition the endpoint of a skill with its control strategy represented by the evolv- 
ing evaluation function, Q f ; .  While attempting to  reach feature fi, the control strategy can invoke any of 
the primitive actions, a,  or any of the skills represented by all Qf;. The choice of possible actions is now 
U ,  E [ Q"', Qan Q"", Qf; . . .Qf l  3 ,  where U ,  is a possible action or skill choice, Q"- is a non- 
adaptive primitive action and Qfi is an adaptive skill. The state x of the agent is established by the state of all the 
incoming sensors, x ,  E [ z1, 2 2 ,  X N  1 ,  where x ,  is a distinct state of the agent. The evaluation function 
for each feature is, Qfi = f ( x ,  U )  or more specifically, Qfi = f ( x 1 ,  . . xn ,  - . . X N .  Qfi , .  . Qf'), where both 
X N  and QfI are open ended and subject to  initial discovery and to increases and decreases due to  ongoing changes. 
It is clearly seen that this evaluation function becomes nested and possibly recursive. That is evaluation function, 
Qf;, can invoke other skills including itself while attempting to reach feature fi. It is this nested nature that will 
allow hierarchical control structures to emerge. As the agent interacts with the environment it receives an external 
reinforcement signal(s), T E X T .  It is through these signals that the agent is driven to perform tasks of external benefit. 
This reinforcement signal is defined as 

. . .  

S;" 1,  1 2 1 s,-~, s,-~, . . . s,, . . * 

. . . a,, 

. . . 
Q"-, 

if external task is a,chieved 
- REXT otherwise T E X T  = 

where TEXT is an external reinforcement signal and REXT is a positive constant. 
In addition, there are various internal reinforcement signals, T I N T .  Th'ese usually originate at sensors monitoring 

fragile components and drive the agent to perform tasks of internal benefit such as avoid damage and avoid low fuel. 
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In the nested Q-learning algorithm there is also a reinforcement signal that effects each currently active skill(s). This 
reinforcement signal drives the action of the agent to reach its defining and desired feature. 

if at desired feature 
- RFEAT otherwise TFEAT = 

where TFEKT is the feature's reinforcement signal and RFEAT is a positive constant. 
For the top-down goal directed action/skill selection the action chosen, U * ,  is determined by, 

where max, is the maximum function taken over all possible primitive actions and skills, QC,u is an adaptive skill 
and Ez,u is the exploration (a recency based exploration policy is used) strategy. 

Upon performing the chosen action, U* be it a primitive action or a skill, the robot advances from state x, to the 
next state z, and incurs a total reinforcement signal, TTOTAL. Also included in this total reinforcement signal is the 
cost of performing the selected action. This cost is designated as TLOW and includes all costs incurred by lower level 
skills and ultimately the actuators as control signals cascade downward in the hierarchy. 

if U* is a primitive action { 5:=o ryoTAL(Ic)  if U* is an adaptive skill TLOW = (4) 

where Et='=, r%TAL(IC) is the total reinforcement signal from the invoked skill summed over the number of steps, K ,  
required to perform the skill, U* and C is a constant that reflects the cost of performing the primitive action. 
The total reinforcement signal for the invoking skill becomes 

TTOTAL = TEXT + TINT + TFEAT + n o w  

This total reinforcement is used to  construct the evaluation function that represents the expected reinforcement 
surface, from which useful top-down control strategies will emerge. The error, eQ is defined to  be, 

(5) 

e~ = * m ~ { Q , w , u )  - QI,,Z1* + TTOTAL ( 6 )  

where y is the temporal discount factor 0 < y < 1 and maxu{Qz,,u} is the current prediction of the maximum total 
future reinforcement remaining when agent leaves state 2,. 

This error is used to adapt the evaluation functions. 

Qz,,u=,* (IC + 1) = QZ,,,U=U* ( I C )  + q~ . eQ ( 7) 

where VQ is the rate of adaptation and k is the index of adaptation. 
The preceding derivation described a nested Q-learning technique though which top down goal action selection 

mechanism that will propagate goal seeking commands down though an emergent hierarchical control system. Each 
skill, whenever invoked, will in turn invoke other skills and/or primitive actions in an attempt to fulfil the desired 
goals of higher skills. Next, the bottom up or sensory based action selection mechanism and how it interacts with 
the top down action selection mechanism will be described. 

Consider the agent at state zv and the skill Qfi is invoked. Upon the arrival at the sensory conditions of the 
defining fea,ture, fi, two things can occur: one, an uneventful arrival a t  fi with only nominal reinforcements occurring, 
or two, the arrival at fi coincides with high negative or high positive reinforcement signals. Such would represent 
possible reactive and opportunistic behaviors, respectively. The invocation of that same skill from another state 
may not necessarily result in such non-typical results or useful correlation. For example, the invocation of the avoid 
obstacle skill would not yield any benefit if an obstacle was not present. Similarly, the invocation of the begin feeding 
skill would not be of any benefit if food is not near. For these bottom-up relationships an evolving reactive function, 
Elfi (xinvoked) is defined for each feature fi. This function learns to predict the reinforcement outcomes of invoking 
each skill from different states. 

Effectively these functions evolve into the bottom-up triggering mechanism for reactive and opportunistic skills. 
Within an emergent hierarchy, such a bottom-up action selection mechanism will be in control at the very top of 
the hierarchy as there are no higher levels to  invoke them in a top-down manner. They will also be able to subsume 
the current top-down flow of commands should a reactive or opportunistic situation present itself. Eventually, some 
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of the bottom-up reactions will be absorbed by the top-down control strategies. That is, a bottom-up triggering 
situation presents itself with enough regularity it will eventually be included in the evolving top-down structure. 
These bottom-up reactive behaviors are most important when the agent is in new situations where the top-down 
structure has not yet formed. They represent chunks of important information learned in the past that might be useful 
in these new situations. As encapsulated reactive/opportunistic skills that will likely contain their own top-down 
structures, these bottom-up contributions will be important in transferring these learned top-down skills between 
tasks and environments. The error, eB for these functions is determined using the eventual reinforcement, TEVT,  that 
occurs at the defining feature. 

eB = TEVT - gf’ ( Z i n v o k e d )  (8) 

where Bfa (zinvoked) is the bottom-up reactive function for skill & f a ,  xinvohed is the state from which &fa was invoked 
and rEVT is the total reinforcement when the feature has been reached. 

The bottom-up predictive function is then adapted. 

where VB is the learning rate. 
As the agent gains experience with its environment and tasks it becomes able to  predict opportunistic/reactive 

situations from state information. When Bfi is included in the top down action selection mechanism of Equation 3 it 
will favour the selection of proven opportunistic and reactive skills above others, even those actions that it may have 
learned to take. This prevents irregular occurrences from distorting the learned evaluation function a;s well as allowing 
for transfer of skills to new situations. This allows for previously discovered and learned important information, of 
immediate benefit or danger, to  be transfered between tasks and environments without having to rediscover it. A 
more detailed simulation study of information transfer can be found elsewhere [4]. 

3. Simulation 

To evaluate the nested Q-learning generation of hierarchical control :systems, the simple two d:imensional robot 

World 1 Wodd 2 
Blue signal light Green signal light 

II ,e‘ 
; ,’ 
I ,’ , ,  

S Starting I m l l o n  lor slmulalions 
SWitcheh bftween the two worlds 

Blue, Green or White floor panel Oreen IIWr penei 

(a) Side view Distinct States of the floor (b) Top view Primitive actions and distinct (c) Two possible world configurations. 
panel color and signaling light spatial locations indicated 

Fig. 2: Simulated robot’s sensory systems: (a) Floor color and signal light sensors, (b) distinct spatial locations and possible movements 
of the robot. Simulated world: (c) Blue and green floor panels in two possible configurations as indicted. The locations of blue and green 
floor panels can change to that of World1 or that of Worldz.  

and world of Figure 2 was used. The robot’s primitive actions were capable of moving it to  one of four adjacent 
spatial locations. The robot’s sensors sensed the color of the floor panel below it, the color of a signalling light and 
the robot’s spatial location within the world. The world is shown in Figure 2 (c). It had white colored floor panels 
except for one blue and one green floor panel at the locations indicated. It was possible for the location of these 
blue and green panels to change, moving to locations indicated by either World1 and World2 in Figure 2 (c). The 
robot itself remains unaware of these changes as it can only sense what is happening locally at its current spatial 
location within the world. Tasks for the robot are externally specified using external reinforcement signals and could 
entail anything from movement to a desired spatial location to matching sensed floor panel color with the color of 
the signalling light. Summarized in Figure 3 are the features found to  be relevant by the robot. Although these 
features are subject to random discovery, they are presented in an orderly list for the readers benefit in the following 
analysis. To evaluate the calpabilities of nested Q-learning to generate control hierarchies the agent was rewarded 
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Table of Features and Primitive Actions Q ' ~  Spatial position 0- 
012 SoatiaI oosition 1 

'bO.dat' - 

Primitive Actions: Actuators 

01 n,...,.. 1 Qo UP 

-5 

8 -10 

-15 
w 
$ -20 
a 

-25 'blO.dat' - - 

- .  . 
QI3 Spatial position 2 
Q14 Spatial position 3 
0 l 5  Soatial Dosition 4 yy,... . .  1 

Q ' ~  Spatial position 5 
Q17 Spatial position 6 
Q'* Spatial position 7 
Q" Spatial position 8 
Q20 Spatial position 9 

Q~ Left 
Q3 Right 
Q4 Stay 
Skills: 
O5 No lirht 1, Light Sensor 

Q6 Bluelight 1 None I I Green I Q2' Spatial position 10 
Q7 Green liaht Q?Z Spatial position 11 

Q"" Spatial position 12 1 -1 QZ4 Spatial position 13 
White Blue Green Q25 Spatial position 14 

Q8 White panel 
Q9 Blue panel 

Q'O Green panel - 

Spatial Sensor p$$J 
Fig. 3: Summary  of skills and  features. 

with the external reinforcement signal of Equation 10. 

+2 if light is blue and floor is blue. 
+4 if light is green and floor is green. 
-1 otherwise. 

The locations of the blue and green floor panels were set randomly switching between the two possible configu- 
rations as shown in in Figure 2 (c). The signal light was set alternating between blue and green. A robot with no 
prespecified information was placed in this world and allowed to attempt to learn how to maximize its rewards over 
time. The performance plots for all skills and primitive actions were too large to be included here, but selected skills 
are shown in Figure 4. The vertical axis shows the performance of the skill or primitive action. The performance 
is taken to be the total reinforcement signal that the skill responds with whenever it is invoked. From these figures 
it is seen that the primitive actions respond consistently with a performance of -1.0 while all the adaptive skills 
performed change over time and usually improve. The first skills to be mastered are the ones defined by the spatial 
locations, skills Qll through Q25. What proved to be two higher level skills, Q9, f i nd  blue panel  and &lo, f ind  green 
panel were subsequently mastered using the two skills of Q1' and Q25. The structure that emerged and the actions 
taken by the robot are shown in Figure 5 (b) and (c). 

- 0 . 9  
0 20 40 60 80 100 120 140 

Time 

(a) Peformance for action Q0, (up) 

Performance of Skill 10 
o , ,  , , , , , 

- 3 0 '  ' .  ' ' ' ' J 

0 20 40 60 80 100 120 140 
Time 

(d) Peformance of skill Q ' O ,  (green panel). 

Performance of Skill 5 
o , ,  , 1  s 1 1  I 
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Q -40 
9 -60  

f -80  
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';f -100 
0 
a -120 
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0 20 40 60 80 100 120 140 
Time 

(b) Peformance of skill Q5, (no light) 

Performance of Skill 11 

a -15 

-20 

w -25 

d -30 
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-40 
0 20 40 60 80 100 120 180 

Time 

(e) Peformance of skill Q'l, (spatial 0). 

Performance of Skill 9 
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-5 
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z -10 

$ -20 

-15 
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'b9.dat' - -25 

-30 
0 20 4 0  60 80 100 120 140 

Time 

(c) Peformance of skill Q9, (blue panel). 

Performance of Skill 25 

E -100 

'b25.dat' - -120 

-140 
0 20 40 60 80 100 120 140 

Time 

(f) Peformance of skill QZ5, (spatial 14). 

Fig. 4: Detailed performance plots for selected skills. 

Sensations or features over which the robot has no control were never learned, nor could they be. For instance, 
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Q5, find no signal light could never be learned, as the signal light was always either blue or green and was never off. 
Interestingly enough, it was originally expected that a similar situation would occur for the other two signal light 
related behaviors, find green signal while the blue light was on and find blue signal while the green light was on, 
because they were not directly controlled by the agent. However, the light was alternating blue, then green, then 
blue, etc., changing upon task completion. The robot soon discovered that if it wanted to  see a green signal light, 
all it had to do was go to the blue panel and once the task triggered by the blue light was completed, the green 
light would come on in place of the blue light. Examples of the agent finlding novel solutions and taking advantage 
of unintentional loopholes in the simulation were common during these trials. 

World 2 and blue light World 2 and green light 
Performance of S k i l l  9 

0 5 
Green floor panel 

Blue floor panel 

10 1 5  20 2 5  
P r i m i t i v e  Action or S k i l l  

(a) Bottom up reactive response for the blue signal light on. 
Note the strength of response for skill QQ. (b) Emergent structure. (c) Actions taken by the robot. 

Fig. 5:  (a) Bottom up reactive reslponses for all skills and primitive actions for blue signal light on sensory condition, (b) the structure 
that emerged with two bottom up driven skills, Q9 and &lo, at the top and (c) actions taken by the robot. 

Figure 5 (a) shows the bottom-up responses of all the possible skill:; for an invoking state in which the blue 
signal light is on. The other details of that state were discovered by the control system to be irrelevant, as would 
be expected. As indicated, the predominant bottom-up response for the blue signal it corresponded to Q9, or find 
the blue panel. These bottom-up responses were shown to respond high foir the skill that was capable of fulfilling the 
task communicated by the signalling light. In these simulations, the green light triggered skill Q ' O  and the blue light 
triggered Q9. These high level skill then utilized other skills and eventually primitive actions to  fulfill the tasks. It 
was clear that a hierarchical control system emerged which, when invoked by a bottom-up opportunistic drive, began 
to search for the locations of the correctly colored panels. It should be noted that as this search requires two way 
backtracking through the state space and the continual disruption of a single monolithic evaluation function would 
make learning this problem in a non-hierarchical architecture difficult. 

4. Conclusions 

The nested Q-learning technique developed in this paper generated hierarchical control structures for the control 
of a simple simulated robot. These control structures resulted from having the controls strategies represented as 
many nested evaluation functions, rather than a single monolithic structure. The skills encapsulated by these 
control strategies could be invoked by other skills (to-down) or invoke themselves (bottom-up). .As a bottom-up 
reactive/opportunistic drive was triggered, it was fulfilled by a cascade of top-down invoked skills. 
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