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Abstract

Active inference introduces a theory describing action-
perception loops via the minimisation of variational free en-
ergy or, under simplifying assumptions, (weighted) predic-
tion error. Recently, active inference has been proposed as
part of a new and unifying framework in the cognitive sci-
ences: predictive processing. Predictive processing is of-
ten associated with traditional computational theories of the
mind, strongly relying on internal representations presented
in the form of generative models thought to explain differ-
ent functions of living and cognitive systems. In this work,
we introduce an active inference formulation of the Watt cen-
trifugal governor, a system often portrayed as the canonical
“anti-representational” metaphor for cognition. We identify a
generative model of a steam engine for the governor, and de-
rive a set of equations describing “perception” and “action”
processes as a form of prediction error minimisation. In do-
ing so, we firstly challenge the idea of generative models as
explicit internal representations for cognitive systems, sug-
gesting that such models serve only as implicit descriptions
for an observer. Secondly, we consider current proposals of
predictive processing as a theory of cognition, focusing on
some of its potential shortcomings and in particular on the
idea that virtually any system admits a description in terms
of prediction error minimisation, suggesting that this theory
may offer limited explanatory power for cognitive systems.
Finally, as a silver lining we emphasise the instrumental role
this framework can nonetheless play as a mathematical tool
for modelling cognitive architectures interpreted in terms of
Bayesian (active) inference.

Introduction
The free energy principle (FEP) has been proposed as a
framework to study perception, action and higher order cog-
nitive functions using probabilistic generative models (Fris-
ton et al., 2010; Hohwy, 2013; Clark, 2015; Buckley et al.,
2017). Under the FEP and related approaches, including
the Bayesian brain hypothesis, perception is usually char-
acterised as a process of (approximate Bayesian) inference
on the hidden states and causes that generate sensory input.
Predictive coding models describe how this process may be
implemented in a biologically plausible fashion by minimis-
ing a mismatch error between incoming sensations and pre-
dictions, or rather estimates, of these sensations produced

by a probabilistic generative model (Rao and Ballard, 1999;
Spratling, 2016). Active inference extends this account of
perceptual processes by 1) noting that they can be treated
as a special case of a more general framework based on the
minimisation of variational free energy under Gaussian as-
sumptions and by 2) proposing a description of action and
behaviour consistent with the minimisation of prediction er-
ror and variational (and expected) free energy (Friston et al.,
2010, 2017). Active inference thus proposes that agents
minimise prediction errors by both generating better esti-
mates of current and future sensory input and, at the same
time, acting in the environment to directly update this input
to better fit current predictions. These actions are biased to-
wards normative constraints (in the form of prior Bayesian
beliefs) that ensure their very existence, closing the sensori-
motor loop and sidestepping “dark room” paradoxes (Friston
et al., 2010, 2012; Buckley et al., 2017; Friston et al., 2017;
Baltieri and Buckley, 2019a).

In (philosophy of) cognitive science, active inference is
usually identified within the predictive processing frame-
work (Clark, 2013). Predictive processing and active in-
ference are often thought to align with more representa-
tionalist views of cognition (Froese and Ikegami, 2013;
Gładziejewski, 2018). One part of the cognitive science
community sees this as a possible advantage (Hohwy, 2013;
Wiese and Metzinger, 2017; Gładziejewski, 2018) while
others see it as one of its main drawbacks (Froese and
Ikegami, 2013; Anderson, 2017; Zahavi, 2017). Others have
argued it may be consistent with embodied and enactive per-
spectives of cognition, claiming that the strengths of the FEP
reside in generative models with no explicit representational
role (Bruineberg et al., 2018; Kirchhoff and Froese, 2017).
A different perspective highlights the potential of the FEP
for the formalisation of “action-oriented” views of cogni-
tion (Engel et al., 2016; Clark, 2015), attempting to recon-
cile computational views and embodied/enactive positions.

As a thinking tool on the role of predictive processing as
a theory of cognition, we introduce an active inference re-
interpretation of a now classical example in the literature
of “anti-representational” accounts of cognitive systems, the
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Watt governor. The Watt (flyball or centrifugal) steam gov-
ernor was used by Van Gelder (1995, 1998) as a paradig-
matic system to challenge the dominant cognitivist under-
standing of cognition. Van Gelder (1995, 1998) claimed
that dynamical systems theory provided a better language to
explain the inner workings of cognitive agents, similarly to
what engineers have done with the Watt governor in terms
of attractors, stability analysis, etc.. At the same time, he
then questioned whether computational descriptions of the
governor offered any explanatory power – over – the use of
dynamical systems theory. While many proponents of the
dynamicist view see the computational metaphor as super-
fluous in many cases (Chemero, 2009), or intimately tied to
a deeply flawed philosophy of mind (Dreyfus, 1972), others
see computational and information-theoretic descriptions of
a system as useful epistemic tools offering interpretations
that are complementary to a dynamical systems analysis
(Bechtel, 1998; Beer and Williams, 2015). In both cases, the
nature of the tight coupling between a flyball governor and
its steam engine is accepted, and the resulting mode of cog-
nition departs from the cognitivist one, i.e., a governor does
not “read” the speed of the engine to “compute”, offline, the
next best action. In this light, a more appropriate explana-
tion of such coupled systems mandates circular, rather than
linear causality, in line with embodied/enactive approaches
to cognitive science highlighting the importance of studying
the dynamical interaction of an agent and its environment.

The Watt governor
The centrifugal (or flyball) governor was introduced as a
mechanism to harvest steam power for industrial applica-
tions, controlling the speed of steam engines using proper-
ties of negative feedback loops (Åström and Murray, 2010).
The centrifugal governor regulates the amount of steam ad-
mitted into a cylinder via a mechanism that opens and closes
a valve controlling the amount of steam released by an en-
gine. This regulation requires balancing the forces applied to
a pair of flyballs secured via two arms to a rotating spindle,
geared to a flywheel driven by a steam engine (Fig. 1).

At rest, the flyballs are subject to gravitational force and
the two arms are in a vertical position while the engine’s
valve is fully open. As the engine is powered and steam
flows into the cylinders via the fully open valve, the engine’s
flywheel velocity is increased, alongside the vertical spin-
dle’s angular velocity. The attached flyballs’ kinetic energy
thus also increases, counteracting the effects of the gravita-
tional force, slowly bringing the arms away from a vertical
position. Once the spindle’s velocity reaches a certain bound
set by the physical properties of the system (and thus indi-
rectly by the engineer who built it), the steam valve of the
engine is slowly closed via a beam linkage connected to a
thrust bearing attached to the flyballs’ arms. When the steam
flow decreases, the vertical spindle slows down, reopening
the valve that will move the flyballs to increase once more

the speed of the shaft, closing the valve, etc. until a stable
equilibrium is reached for a desired steam flow associated to
a specific angle between the flyballs’ arms and the vertical
shaft.

Using a standard formulation by Pontryagin (1962), based
on previous work by Vyshnegradsky (1877) and Maxwell
(1868), we define a Watt governor as a conical pendulum
with two flyballs (the “bobs”) travelling at constant angular
speed φ

ψ̈ = (φ)2 sin(ψ) cos(ψ)− g

l
sin(ψ)− b

m
ψ̇ (1)

based on a simple derivation of Newtonian’s laws from
Fig. 1, and with all variables explained in more detail in ta-
ble 1. A steam engine is then attached via a flywheel with

Figure 1: The Watt Governor. The Watt, or centrifugal,
governor connected to a throttle valve regulating the flow of
steam allowed into the cylinders of a steam engine. (Original
image courtesy of Wikimedia Commons.)

Table 1: Watt governor, variables and constants.

Description

ψ, φ Flyball arm angle and velocity (ψ̇ = φ)
ω Steam engine flywheel angular speed
I Steam engine flywheel moment of inertia
G Torque induced by engine load
n Gear or transmission ratio
g Gravitational acceleration
l Length of flyball arms
b Friction constant
m Flyball mass
k Constant relating flyball height and engine torque

angular speed ω, moment of inertia I and a load torque G

Iω̇ = k cos(ψ)−G (2)
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The flywheel is geared to the vertical spindle so that the
angular velocities of the engine’s flywheel and the vertical
spindle are proportional, φ = nω, up to a constant n, the
gear ratio. With these assumptions, we can reduce the sys-
tem to a set of first order coupled differential equations,

ψ̇ = φ

φ̇ = (nω)2 sin(ψ) cos(ψ)− g

l
sin(ψ)− b

m
ψ̇

ω̇ =
k

I
cos(ψ)− G

I
(3)

We then find the equilibrium of this system by equating to
zero the left-hand side of equation (3) and by defining a con-
stant shaft velocity ω0 and fixed arm angle ψ0 where the arm
angular velocity is zero, φ = φ0 = 0,

φ0 = 0

cos(ψ0) =
G

k

n2ω2
0 =

g

l · cos(ψ0)
(4)

The system is henceforth linearised near its equilibrium
to simplify the analysis, see Maxwell (1868); Pontryagin
(1962), defining small disturbances ∆ψ,∆φ,∆ω as

∆ψ := ψ − ψ0,

∆φ := φ− φ0,
∆ω := ω − ω0

After neglecting terms quadratic in disturbances
∆ψ,∆φ,∆ω, we finally obtain

∆ψ̇ = ∆φ

∆φ̇ =
g sin2(ψ0)

l · cos(ψ0)
∆ψ − b

m
∆φ+

2g sin(ψ0)

l · ω0
∆ω

∆ω̇ = − sin(ψ0)
k

I
∆ψ (5)

These equations are typically used for the analysis of this
engine-governor coupled system, and represent a simplified
version of the governor’s behaviour near equilibrium. The
spindle angular velocity is initially assumed to be constant
(by construction) to simplify the treatment from a spherical
to a conical pendulum where the flyball arms’ velocity is
zero (φ = φ0 = 0). Details about the steam engine are
usually not provided, only explaining its effects through a
torque Iω̇ which depends on the arm angle ψ given a certain
geometry of the governor, as here expressed in equation (2).

The governor’s generative model
Using active inference, we can re-derive similar equations,
in particular for the engine’s flywheel angular velocity ∆ω̇
in equation (5), building on a previous formulation of

PID control under this framework (Baltieri and Buckley,
2019c). Our formulation includes a generative model in
state-space form that describes observations/measurements,
hidden states, inputs and parameters of the engine “from the
perspective of a governor”.

This description shouldn’t however be taken too literally,
as we will discuss later. In the spirit of Van Gelder (1995,
1998), we will rather highlight the somewhat bizarre nature
of concepts such as measurements performed by a physical
system. In light of this, we thus stress an as-if interpretation
of generative models (McGregor, 2017a; Robert, 2007). Ac-
cording to this idea, physical systems can be interpreted as
if they were cognitive agents, with generative models spec-
ifying their Bayesian beliefs, governing preferences and dy-
namics that produce equations describing perception-action
loops (see also Discussion). In our formulation, this corre-
sponds to a rather unusual reading of the engine-governor
coupled system: an agent trying to stabilise its observations,
i.e., the perceived angle of the flyball arms, by adapting its
own actions, i.e., the valve opening1 (cf. “behaviour as the
control of perception” (Powers, 1973)).

We thus start by defining the following generative model:

ψ = x+ z

x′ = −α(x− ψ0) + w (6)

where ψ, α, x, x′ and ψ0 are, in state-space models terms,
observations, parameters, hidden states and their deriva-
tives2, and exogenous inputs of the engine from the (as-if )
perspective of the controller. Here the observations ψ repre-
sent measurements performed by our agent, i.e., its incom-
ing sensory input about the arm angle. Variables x define
states of the engine hidden to the governor and assumed to

1Usually one looks at this system in terms of stabilising the
velocity of the steam engine via the regulation of the arms angle,
however the opposite perspective adopted here 1) currently better
fits with the model presented in Baltieri and Buckley (2019c) and 2)
is perfectly equivalent to the more traditional way of looking at this
problem, since the angle ψ is a single-valued monotonic function
of the angular velocity ω (Pontryagin, 1962) due to the mechanics
of the vertical shaft and the flyball arms, a “stand-in” in the sense
of Bechtel (1998). Interestingly, this view suggests that we might
just as well consider the engine as an “agent” acting to control its
observations of the “environment”, the governor. One way to treat
this issue in a more principled manner is to look at views of agency
that are defined in terms of “interactional asymmetry” of the cou-
pling between agent and environment (Barandiaran et al., 2009).
An in depth discussion of this idea is however left for future work.

2Here we denote derivatives in the generative model with a dash
rather than a dot. The dynamics described by the generative model
are not integrated directly, and are only used to derive a set of equa-
tions describing the recognition dynamics as a gradient on varia-
tional free energy (Friston, 2008; Buckley et al., 2017). The dot
notation is instead used for the generative process equation (5) and
for the recognition dynamics equation (10) (then simplified, un-
der a few assumptions, in equation (16), which would be forward-
integrated in a simulation.
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generate these measurements (similar to the way one nor-
mally hides the functioning of a real steam engine in equa-
tion (2)). Inputs ψ0 stand for the presence of external fac-
tors affecting the system in the form of torque loads G, see
equation (4). The first equation describes how hidden states
x are mapped to observations ψ using an identity function,
with a random variable z introduced to express measure-
ment noise, or rather uncertainty, from the perspective of
our agent. In the second equation, the parameter α speci-
fies the convergence rate of the intrinsic dynamics modelled
by hidden states x given inputs ψ0. The fluctuations w are
introduced as an uncertainty term on the dynamics of the
engine-governor coupled system, representing for instance
errors due to the use of a linear approximation of the real
dynamics near equilibrium.

Using this generative model, the recognition dynamics of
the system can be obtained by, 1) finding an expression for
the variational free energy, and 2) under the assumption that
the quantity of free energy is minimized over time, deriving
a set of differential equations that minimize the free energy
(i.e., following its negative gradient). Under a couple of as-
sumptions described later, these differential equations (i.e.,
the recognition dynamics) reduce to the equation describing
the dynamics of the linearised engine in equation (5).

An expression for the variational free energy can be de-
rived after defining the distributions of z, w, in the simplest
case assuming they are both Gaussian, z ∼ N(µx, σ

2
z), w ∼

N(ψ0, σ
2
w) and by considering the following expression for

the (Laplace-encoded) free energy (Friston, 2008)3

F ≈ − lnP (ψ, x)
∣∣∣
x=µx

(7)

where F is evaluated near the most likely estimate of hidden
states x, i.e., for a Gaussian distribution, its mean or median,
µx. After rewriting the generative model in equation (6) in
probabilistic form using the definitions of z, w, one obtains
the following expression

F ≈ 1

2

[
πz

(
ψ − µx

)2
+ πw

(
µ′
x + α(µx − ψ0)

)2
− ln

(
πzπw

)]

(8)

where we introduced precisions πz, πw as the inverse vari-
ances of random variables z, w, i.e., πz = 1/σ2

z , πw =
1/σ2

w. Actions a are then defined under the very general as-
sumption that they have an effect on observations ψ (Friston
et al., 2010; Baltieri, 2019), i.e.,

ψ = f(a) (9)

By minimising free energy on both the means of hidden
states µx and actions a, we then obtain the recognition dy-

3For a full derivation of this particular form see for instance
Friston et al. (2008); Buckley et al. (2017); Baltieri (2019).

namics (Buckley et al., 2017), i.e., a set of differential equa-
tions describing the dynamics of our agent. The recogni-
tion dynamics implement perception (estimation of states
µx) and action (control via actions a) of an agent described
as a closed sensorimotor loop. The minimisation of free en-
ergy is then achieved via the following gradient descent

˙̃µx = µ̃′
x − kp

∂F

∂µ̃x

ȧ = −ka
∂F

∂a
= −ka

∂F

∂ψ̃

∂ψ̃

∂a
(10)

with learning rates kp and ka. Notice that these equations
represent dynamics actually integrated by an agent in or-
der to implement (as-if) inference and control processes,
with the same dot notation used to describe the genera-
tive process of the governor-engine coupled system in equa-
tion (5). Here we also introduced the use the tilde pre-
viously adopted by Friston (2008); Buckley et al. (2017);
Baltieri (2019) to represent higher embedding orders, in this
case, µ̃x = [µx, µ

′
x], ψ̃ = [ψ,ψ′]. More generally, when

higher embedding orders are introduced as a possible way to
represent non-Markovian processes (Friston, 2008; Baltieri,
2019), this requires an extra term µ̃′

x) to ensure the conver-
gence to a trajectory (rather than a point attractor) in a mov-
ing frame of reference (Friston, 2008). For a Watt governor
at equilibrium, we will however assume that the flyball arm
angular velocity is zero, thus defining a point attractor where
µ̃′
x = 0. In this case, equation (10) thus reduces to

µ̇x = µ′
x − kp

[
− πz

(
ψ − µx

)
+ πwα

(
µ′
x + α(µx − ψ0)

)]

µ̇′
x = 0

ȧ = −ka
∂ψ

∂a
πz(ψ − µx) (11)

Under a few standard assumptions, this system can then be
further simplified to show actions consistent with the regu-
lation of the speed of a steam engine.

Assumption 1: The dynamics of the generative
model are overdamped
The recognition dynamics in equation (11) specify a gra-
dient descent on the variational free energy in equation (8)
given the generative model in equation (6). Importantly, this
generative model is parameterized by α, a parameter that de-
scribes the rate of convergence of its internal dynamics. As
previously shown, for instance in Baltieri (2019) (Chapter
7.), different choices of α allow for the implementation of
qualitatively different behaviours: from the regulation of a
process to a certain goal (large α), to a purely passive (e.g.,
no account of actions) process of inference of the hidden
properties of observed stimuli in the spirit of predictive cod-
ing models of perception (Rao and Ballard, 1999; Baltieri
and Buckley, 2019a) (small α). Here we will consider over-
damped dynamics of the generative model in equation (6)
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dominated by the first (drift) term, assuming a very large pa-
rameter α, i.e., α� 0 and α� πz, πw. This translates into
recognition dynamics now describing updates of the average
hidden state µx dominated by terms quadratic in α (Baltieri
and Buckley, 2019c) (cf. equation (11)). The expected hid-
den state µx thus quickly converges to its steady state (i.e.,
average velocity µ′

x = 0), defined by the input (or bias term)
ψ0,

µ̇x ≈ −kpπwα2(µx − ψ0) =⇒ µx = ψ0 (12)

which readily ensures that the goal of the system is now to
stabilise the flyball arms angle towards ψ0 (NB: in general
ψ0 need not be a fixed point attractor), which in turn reflects
regulation of the velocity of the engine4 (seen also Note 1).
Moreover, since we have assumed α � πz, πw, µx con-
verges much more quickly than a and thus the minimisation
of free energy in equation (11) can be further simplified to
include only the equation for action

ȧ ≈ −ka
∂ψ

∂a
πz(ψ − ψ0) (13)

Assumption 2: Action updates are proportional to
arm angle updates
To show a direct correspondence between the active infer-
ence derivation and the original equations, here we assume
that the measurement precision πz is inversely proportional
to the moment of inertia of the steam engine flywheel I ,

πz =
1

I
=⇒ σ2

z ∝ I (14)

or more precisely that πz = k
I , using the arbitrary constant

defined in table 1 (Pontryagin, 1962). We then consider the
case where the learning rate, a hyperparameter of the min-
imisation scheme (not of the generative model) is set to 1,
ka = 1, and essentially replaced by another hyperparameter
playing a similar role, the precision πz . We also assume a
linear relationship between actions a and observations ψ in
equation (9), such that

∂ψ

∂a
= constant (15)

Using the fact that ∂ψ/∂a need only be positive to ensure
convergence via a negative feedback loop (Denny, 2002).
For convenience we impose ∂ψ/∂a = sin(ψ0), and finally
obtain

ȧ ≈ − sin(ψ0)
k

I
(ψ − ψ0) = − sin(ψ0)

k

I
∆ψ
(
≡ ∆ω̇

)

(16)

4Under suitable parameters meeting typical stability criteria
(Pontryagin, 1962).

which is equivalent to the simplified engine in equation (5),
under the assumption that ψ0 reflects changes due to dif-
ferent loads as in the original formulation of the governor-
engine system (Pontryagin, 1962). In active inference terms,
equation (16) describes the behaviour of an agent observing
its arms angle ψ (thus indirectly inferring the speed of the
engine, see Note 2). At the same time, this agent acts to pro-
duce a rotational energy of its flyballs based on deviations
from the engine load torque G, and minimising a predic-
tion error between its observations ψ and the load arm angle
ψ0 specifying an engine speed ω0 via a relation known as
“nonuniformity of performance” (Pontryagin, 1962; Denny,
2002). Ultimately, this leads to a change in the engine’s
speed, here simplified as the angular velocity of the engine
shaft (geared into the engine flywheel), ∆ω. Expected hid-
den states µx are only implicitly defined and effectively re-
moved in the limit of deterministic dynamics using Assump-
tion 1.

Discussion
In this work, we introduced a rather unconventional treat-
ment of a Watt governor based on active inference. The
Watt (centrifugal) governor has played a central role in the
debate between dynamicist and cognitivist ways of thinking
about cognitive systems. Proposed as a dynamicist alterna-
tive analogy to the cognitivist digital computer (Van Gelder,
1995) and the sense-model-plan-act strategy implemented
by several cognitivist frameworks (Brooks, 1991; Hurley,
2001), since its introduction, a number of different works
have argued for the merits and limitations of this analogy
in addressing relevant questions in (philosophy of) cogni-
tive science, including for instance Eliasmith (1997); Bech-
tel (1998); Beer (2000); Chemero (2009). The discussion
often focuses on the importance of representations to study
and explain cognitive agents, echoing a long standing debate
over the role of these constructs for theories of cognition
(Fodor, 1983; Harvey, 1992; Varela et al., 1991; Beer, 2000;
Gallagher, 2006; Chemero, 2009; Di Paolo et al., 2017).
Echoing Harvey (1992) and following in particular Chemero
(2009), we distinguish between metaphysical and epistemo-
logical claims when it comes to representationalism. The
first pertain to the nature of cognitive systems, the second to
our (the scientists’) best explanation of cognitive systems. In
the case of the Watt governor, one is hard pressed to defend
the metaphysical claim. Rather, the debate usually focuses
on the epistemological status of the system: is it useful to ex-
plain a Watt governor in representational terms or, in other
words, does taking the governor flyball arm angle to repre-
sent the speed of the engine help us understand the workings
of the governor?

Active inference is a recent framework developed in the-
oretical neuroscience that describes several aspects of liv-
ing and cognitive systems in terms of the minimisation of
variational (or expected) free energy, which under simpli-
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fying (Gaussian) assumptions reduces to a weighted sum
of prediction errors. According to active inference, action-
perception loops can be seen as a gradient descent on a free
energy functional describing normative behaviour for a sys-
tem. Perception is characterised as a process of Bayesian
inference on hidden world variables and action is portrayed
as the update of environmental properties to better reflect
current perceptual inferences, mediated by the goals of an
organism, e.g., its survival, in the form of prior Bayesian
beliefs. It has been argued that this framework, often ad-
dressed in terms of predictive processing, constitutes a new
paradigm for the study of cognitive agents (Clark, 2013; Ho-
hwy, 2013; Seth, 2014; Clark, 2015; Wiese and Metzinger,
2017; Hohwy, 2020). At the moment however, its role in
cognitive science remains highly controversial (Kirchhoff
and Froese, 2017; Colombo et al., 2018). In particular, some
authors suggest that internal representations are central to
predictive processing and are used to define computational
processes in a more classical sense (Hohwy, 2013, 2020),
some others claim that representations are detrimental for
a proper understanding of predictive processing (Bruineberg
et al., 2018), while others attempt to reconcile these different
interpretations (Seth, 2014; Clark, 2015). Much of this lit-
erature, however, seems to remain (almost deliberately) un-
clear as to the metaphysical status of the central constructs
involved, with a few relevant works favouring an instrumen-
talist interpretation (Anderson, 2017; Colombo and Wright,
2017; Colombo et al., 2018; van Es, 2020).

Here we take a rather sobering perspective on the role
of active inference theories for cognitive and living sys-
tems, especially arguing against claims regarding internal
representations in predictive processing and the metaphys-
ical status often implicitly granted to processes of varia-
tional free energy/prediction error minimisation (Friston,
2013; Clark, 2013; Hohwy, 2013; Gładziejewski, 2018; Fris-
ton, 2019). This perspective aligns with epistemological
stances (Robert, 2007; Beer and Williams, 2015) support-
ing an instrumental role for frameworks such as Bayesian
decision theory, information theory, dynamical systems,
and in this case active inference and predictive processing
(Colombo and Wright, 2017), as possible interpretations
of physical and cognitive systems. In this light, a genera-
tive model may simply provide a possible way to describe
a system’s behaviour, rather than an ontological character-
isation of its very nature and inner workings (Baltieri and
Buckley, 2019b). Generative models can act as represen-
tations for an observer, as a valuable tool for the study of
physical, living and cognitive systems, to describe them
from an experimenter’s perspective (Bechtel, 1998; Harvey,
2008; Chemero, 2009; Beer and Williams, 2015; McGre-
gor, 2017b), e.g., to understand the relationship between the
spindle arm angle in a Watt governor, and the speed of a
steam engine. Their interpretation as intrinsic properties of
a system, i.e., generative models as “internal models” used

by the system itself (Fodor, 1983), can be on the other hand
misleading.

Should one try to find a generative model of the kind ex-
pressed in equation (6) – inside – a Watt governor? No, as
this is simply a category mistake: observer-dependent uncer-
tainties (e.g., w, z) and arbitrary assumptions (e.g., parame-
ter α � 0) cannot be found within this physical system. A
generative model provides details for a scientist to specify
a cost functional, variational free energy, that can be used
to describe the (recognition) dynamics of a system (Buckley
et al., 2017; Ramstead et al., 2019) as seen in equation (11).
The presence of a “generative model for a Watt governor” in
equation (6), and the ensuing claims of an agent “minimis-
ing variational free energy” while regulating the opening of
a steam valve, should thus be handled with care5.

This suggests that we should exercise caution in making
metaphysical claims using predictive processing, the free en-
ergy principle and active inference. Statements regarding
their mechanistic (Clark, 2013; Hohwy, 2013, 2020) or rep-
resentational (Rescorla, 2016; Hohwy, 2016) contents for
cognitive systems are in fact often ambiguous and mostly
based only on “evidence consistent with” generative models
in the brain (Colombo and Wright, 2017; Colombo et al.,
2018), as even the most recent reviews show (Walsh et al.,
2020).

At this point one might wonder what the relevance of ac-
tive inference and predictive processing might be in the cog-
nitive sciences. Here we suggest that probabilistic genera-
tive models ought to be recognised for their effectiveness as
a mathematical formalism connecting and extending ideas
such as the good regulator theorem in cybernetics (Conant
and Ashby, 1970) (see Seth (2014)), the internal model prin-
ciple in control theory (Francis and Wonham, 1976) (see
Baltieri (2019)), perceptual control theory (Powers, 1973)
in psychology, or the notion of entailment in theoretical bi-
ology (Rosen, 1991) (see Friston (2012); Ramstead et al.
(2019)). In this light, active inference can play an impor-
tant instrumental role for the overarching attempt of unify-
ing previous results in the study of adaptive agents in cy-
bernetics, control theory, psychology, neuroscience, dynam-
ical systems, information theory and physics. Under a more
general framework, notions such as feedback, stability, in-
ference, attractors, uncertainty and dynamics can be seen
from different, but complementary, perspectives that allow
for more complete descriptions of agents and agency, sim-
ilarly to the approach adopted, for instance, by Beer and
Williams (2015).

For example, while the notion of “inference” in cogni-
tive science often tends to hinge on the intuition of inference

5In the same way one should be careful when explaining, for
example, Coulomb’s law: saying that an electron calculates its
distance from another electron, computes the force applied to that
electron and actuates said force in the real world would make for a
rather unusual and possibly confusing explanation (Latash, 2010).
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to the best explanation (Chemero, 2009) and its limited ex-
planatory power (Seth, 2014), a more general treatment of
Bayesian inference schemes and their connections to differ-
ent fields can include other interpretations of inference that
may be useful to describe the behaviour of cognitive sys-
tems. These include, for instance, connections to stochastic
processes in non-equilibrium thermodynamics, where bio-
logical agents can be better characterised as systems away
from (thermodynamic) equilibrium (Schrödinger, 1944) in a
framework based on stochastic rather than classical thermo-
dynamics (Seifert, 2012). In this case, inference becomes
simply a way to (mathematically) describe the statistical
properties of agents represented in terms of non-equilibrium
steady state properties of a random process (Friston, 2019).
In the same way, a control theoretic reading of inference
(Kappen et al., 2012) gives room for inference to the most
useful (normative) behaviour (Baltieri, 2019; Seth, 2015),
rather than to the best explanation, with the behaviour of
agents described in terms of inference biased towards the
normative constraints of a system (i.e., a Bayesian inference
conditioned on a system’s norms (Barto et al., 2013; Baltieri,
2019)). Under the same set of ideas, one can then recognise
inference as a process encompassing theories in evolution-
ary biology, where following adaptive paths on the fitness
landscape is likened to a problem of Bayesian model selec-
tion (Czégel et al., 2019).

Conclusion
Using the Watt governor as a toy model, in this work we dis-
cussed the importance of generative models in the context
of predictive processing and active inference, extending our
previous critiques on their role as internal representations
(Bruineberg et al., 2018; Baltieri and Buckley, 2017, 2019b).
By defining a linear probabilistic generative model describ-
ing “observations” and “hidden states” from the perspective
of a Watt governor, we built a cost functional (i.e., varia-
tional free energy) to describe the behaviour of this system
as if (McGregor, 2017a) it was an agent trying to minimise
its prediction error to control its observations and regulate
the speed of a steam engine. Via the minimisation of this
cost functional under a couple of relatively straightforward
and common assumptions, i.e., overdamped dynamics and
an appropriate use of constants that ensure regulation via a
negative feedback loop, we then re-derived equations equiv-
alent to the mathematical treatment of an engine for the Watt
governor linearised near equilibrium. Using this as an ex-
ample, we then discussed epistemological and metaphysical
stances (Chemero, 2009) for generative models in predictive
processing and active inference, focusing on the former and
exerting caution on the latter. Our formulation shows that
generative models can easily be used to describe canonical
cases of the dynamical systems approach in cognitive sci-
ence.

This paper suggests that generative models are best un-

derstood as an epistemic tools for an observer to specify
the properties of a system they wish to study and their own
assumptions and sources of uncertainty during a process
of epistemological analysis (Colombo et al., 2018; van Es,
2020). As such, they are not internal representations for a
system, but rather constitute just a descriptive framework (a
representation, not internal (Harvey, 2008)) for an observer.
Seeing generative models as internal representations may
simply reflect a “mind projection fallacy” (Jaynes, 1990),
where epistemic constructs used by a scientist are assumed
to be real objects in the physical world.

Within the existing literature on the free energy princi-
ple and active inference, we find an almost deliberate con-
flation of realist and instrumentalist perspectives, address-
ing how aspects of one’s model come to explain or consti-
tute aspects of the mind. One example is the discussion on
boundaries of the mind (presumably aspects of the world),
which is premised on where Markov Blankets (i.e., statis-
tical properties of a model specifying conditional indepen-
dence between random variables) are located (Clark, 2017;
Hohwy, 2017; Kirchhoff and Kiverstein, 2019). This case
will however be addressed in more detail in the near fu-
ture. The present work supports active inference as a poten-
tially useful descriptive language for cognition, highlight-
ing its instrumental role in studying action-perception within
a general mathematical framework including complemen-
tary interpretations of the behaviour of an agent (Tishby and
Polani, 2011; Beer and Williams, 2015), but remains cau-
tious on the metaphysical implications of generative models
as internal representations often found in the literature (Ho-
hwy, 2013; Clark, 2015; Rescorla, 2016).
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lection as bayesian inference, major transitions in individ-
uality as structure learning. Royal Society Open Science,
6(8):190202.

Denny, M. (2002). Watt steam governor stability. European journal
of physics, 23(3):339.

Di Paolo, E. A., Buhrmann, T., and Barandiaran, X. (2017). Sen-
sorimotor Life: An Enactive Proposal. Oxford University
Press.

Dreyfus, H. (1972). What Computers Can’t Do. New York: MIT
Press.

Eliasmith, C. (1997). Computation and dynamical models of mind.
Minds and Machines, 7(4):531–541.

Engel, A. K., Friston, K. J., and Kragic, D. (2016). The pragmatic
turn: Toward action-oriented views in cognitive science, vol-
ume 18. MIT Press.

Fodor, J. A. (1983). The Modularity of Mind. MIT Press.

Francis, B. A. and Wonham, W. M. (1976). The internal model
principle of control theory. Automatica, 12(5):457–465.

Friston, K. J. (2008). Hierarchical models in the brain. PLoS Com-
putational Biology, 4(11).

Friston, K. J. (2012). A free energy principle for biological sys-
tems. Entropy, 14(11):2100–2121.

Friston, K. J. (2013). Life as we know it. Journal of the Royal
Society Interface, 10(86):20130475.

Friston, K. J. (2019). A free energy principle for a particular
physics. arXiv preprint arXiv:1906.10184.

Friston, K. J., Daunizeau, J., Kilner, J., and Kiebel, S. J. (2010).
Action and behavior: A free-energy formulation. Biological
Cybernetics, 102(3):227–260.

Friston, K. J., FitzGerald, T., Rigoli, F., Schwartenbeck, P., and
Pezzulo, G. (2017). Active inference: a process theory. Neu-
ral Computation, 29(1):1–49.

Friston, K. J., Thornton, C., and Clark, A. (2012). Free-energy
minimization and the dark-room problem. Frontiers in psy-
chology, 3:130.

Friston, K. J., Trujillo-Barreto, N., and Daunizeau, J. (2008).
DEM: A variational treatment of dynamic systems. NeuroIm-
age, 41(3):849–885.

Froese, T. and Ikegami, T. (2013). The brain is not an isolated
“black box,” nor is its goal to become one. Behavioral and
Brain Sciences, 36(3):213–214.

Gallagher, S. (2006). How the body shapes the mind. Clarendon
Press.

128

D
ow

nloaded from
 http://direct.m

it.edu/isal/proceedings-pdf/isal2020/32/121/1908564/isal_a_00288.pdf by guest on 21 D
ecem

ber 2023



Gładziejewski, P. (2018). Predictive coding and representational-
ism. Synthese, 193(2):559–582.

Harvey, I. (1992). Untimed and misrepresented: Connectionism
and the computer metaphor. Technical report, University of
Sussex, School of Cognitive and Computing Sciences.

Harvey, I. (2008). Misrepresentations. In Proceedings of the
Eleventh International Conference on the Simulation and
Synthesis of Living Systems. MIT Press.

Hohwy, J. (2013). The predictive mind. OUP Oxford.

Hohwy, J. (2016). The self-evidencing brain. Noûs, 50(2):259–
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