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that may underlie speed-curvature power laws discovered in 
empirical studies.
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Introduction

One of the best-studied characteristics of human voluntary 
movements is the empirical relationship between instantane-
ous speed and local path curvature. Speed—distance divided 
by time—is a spatio-temporal property of movement, while 
curvature is a purely spatial property, corresponding to the 
extent to which the trajectory bends relative to a straight 
line. Although a given trajectory can be traced with infinitely 
many different speed profiles, biological constraints restrict 
the degrees of freedom with the result that speed generally 
co-varies with curvature throughout a given continuous 
movement (Viviani and Terzuolo 1982). Specifically, in a 
planar drawing of elliptic shapes, the angular speed of the 
pen tip varies in close proportion to the 2/3 power of the 
curvature of the trace (so called 2/3 power law, Lacquaniti 
et al. 1983).

Since the original demonstration, the 2/3 power law has 
been largely confirmed for elliptic trajectories drawn in 2D 
space (Viviani and Schneider 1991; Viviani and Flash 1995; 
Richardson and Flash 2002; Flash and Handzel 2007; Huh 
and Sejnowski 2015; Catavitello et al. 2016) or 3D space 
(Soechting and Terzuolo 1986; Flanders et al. 2006; Maoz 
et al. 2009). Moreover, speed-curvature power relationships 
have been reported for many other types of movements, 
including isometric 3D force trajectories (Massey et al. 
1992), walking trajectories (Vieilledent et al. 2001; Ivanenko 
et al. 2002; Hicheur et al. 2005), and smooth pursuit eye 
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movements (de’Sperati and Viviani 1997). Deviations from 
the 2/3 value of the exponent occur at inflection points of 
the trajectory where the prescribed tangential speed would 
become infinite, but they also occur for some trajectories 
without inflection points, such as ellipses with low eccen-
tricities or large sizes (Wann et al. 1988; Schaal and Ster-
nad 2001), or other shapes (Massey et al. 1992; Schaal and 
Sternad 2001; Richardson and Flash 2002; Dounskaia 2007; 
Flash and Handzel 2007; Bennequin et al. 2009; Huh and 
Sejnowski 2015).

The power law has been studied mainly in humans, but 
it also applies to drawings made by monkeys (Schwartz 
1994; Abeles et al. 2013) and to crawling movements of 
Drosophila larvae (Zago et al. 2016). Thus, the power law 
might be a recurrent law underlying several biological move-
ments. It is generally thought to depend on physiological 
mechanisms, although its exact origin remains debated. In 
particular, it has been suggested that the law might be due 
to kinematic or dynamic constraints arising at some level of 
the neuro-musculo-skeletal chain (Schwartz 1994; Viviani 
and Flash 1995; Gribble and Ostry 1996; Harris and Wolpert 
1998; Schaal and Sternad 2001; Dounskaia 2007; Flash and 
Handzel 2007; Bennequin et al. 2009; Polyakov et al. 2009; 
Huh and Sejnowski 2015; Zago et al. 2016).

Now, a paper recently published in this journal (Marken 
and Shaffer 2017, in the following abbreviated as M/S) 
claims that the 2/3 power law is just an artifact, being a 
mathematical consequence of the way the critical variables 
of speed and curvature are calculated. If true, the contention 
put forth by M/S would have a significant impact on the field 
of motor control, since the power law is often considered as 
one of the hallmarks of curvilinear movements (e.g., Wolp-
ert et al. 2013).

Here we reassess the validity of the speed-curvature 
power law by considering previous work as well as new 
data. In particular, we show that (a) the power law is not a 
trivial relationship given by mathematics or physics, (b) it 
does not depend on the methods used to compute the criti-
cal variables, and (c) the exponent of the power law is not 
fixed to 2/3 but varies with the shape of movement and with 
environmental factors. Based on these points, we reject the 
hypothesis that the empirical power law is a mathematical 
or statistical artifact.

Basic notions on the geometry of curves

As remarked at the outset of this article, a priori any given 
path of movement can be traced with infinitely many speed 
profiles, since the path specifies the instantaneous move-
ment direction but not the speed. Moreover, any path can be 
defined independently of the law of motion. Speed and path 

become jointly determined only when a specific kinematic 
law is provided.

We first review the definitions of the critical variables 
from elementary differential geometry of planar, continuous, 
differentiable, regular curves (for 3D curves, see for example 
Struik 2012; Gielen et al. 2009; Pollick et al. 2009). The 
position of a point P moving along the curve (Fig. 1) can be 
described by the functions of time x = f(t) and y = g(t), as 
well as by the arc-length s along the curve measured from a 
starting point (x0, y0). Then, given unit vectors i1 and j along 
the x and y axis, respectively, the vector from the origin to P 
is R = ix + jy = if(t) + jg(t) = R(s), the tangential velocity 
vector is � =

d�

dt
= �

dx

dt
+ �

dy

dt
, with magnitude (speed2) 

V = |�| = |||
d�

dt

||| =
√(

dx

dt

)2

+
(

dy

dt

)2

=
|||
ds

dt

|||. We can associ-

ate to P a moving frame (Frenet-Serret frame) composed of 
tangent and normal unit vectors, T and N respectively. 
� =

d�

ds
= �

dx

ds
+ �

dy

ds
=

�

|�|, � =
d�∕ds

|d�∕ds|. Thus, � = �|�| and 

� = � × � where Ω is the vector of angular velocity. We 
can measure the direction of T by means of the tangential 
angle α, that is, the angle between the tangent line to the 

x

y

ds

R P

 V

Fig. 1   Schematic illustration of kinematic and geometric variables 
for an arbitrary trajectory described by a moving point P (see text for 
details). V is the vector of tangential velocity, α the tangential angle, 
R the radius of curvature (radius of the osculating circle)

1  Bold characters denote vector quantities throughout.
2  Although the terms velocity and speed are often used interchange-
ably in the literature (including M/S), the former denotes the vector 
with a magnitude and direction while the latter denotes the magnitude 
only.
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curve at the given point and the x-axis. Angular speed (mag-
nitude of angular velocity vector) corresponds to the abso-
lute value of the rate of change of α with respect to time 
A = |�| = |||

d�

dt

|||. Curvature C corresponds to the absolute 

value of the rate of change of α with respect to arc-length 
C =

|||
d�

ds

||| =
|||
d�

ds

||| =
|||
d2�

ds2

|||, and C� =
d�

ds
. Radius of curvature 

R is the inverse of C and corresponds to the radius of the 
osculating circle, i.e., the circle passing through the point P 
and two other points on the curve infinitesimally close to P.

From the above equations V =
|||
ds

dt

|||, A =
|||
d�

dt

|||, C =
|||
d�

ds

|||, it 

can be seen that speed (whether tangential or angular) is 
independent of curvature (or radius of curvature) in the 
absence of constraints. In other words, the curvature profile 
uniquely specifies the shape of a movement, independently 
of the speed profile (Bennequin et al. 2009; Huh and Sejnow-
ski 2015).

Empirical speed‑curvature power laws for human 
drawing have different exponents

As is the case for all biological power laws (West 2017), also 
the speed-curvature power law is an approximation. Most 
previous studies investigating speed-curvature relationships 
in biological movements tested the hypothesis that angular 
speed A is approximately proportional to curvature C raised 
to an exponent β:

where A and C are measured at each instant of time at the 
endpoint that traces the trajectory (the pen tip for hand-draw-
ing). A different but mathematically equivalent formulation 
of speed-curvature relationships involves V instead of A, 
and R instead of C. Because A = V/R and R = 1/C, Eq. 1 is 
equivalent to:

The relationships of Eqs. 1–2 can also be expressed using 
logarithms, yielding respectively:

In the case of normal hand-drawing of ellipses, the expo-
nent β is approximately equal to 2/3 and K is roughly con-
stant throughout the drawing, being related to the overall 
tempo of the movement and increasing proportionally to the 
average speed (Lacquaniti et al. 1983). For more complex 
trajectories such as the scribbles, K is piecewise constant 
(Lacquaniti et al. 1983, 1984; Viviani and Cenzato 1985; 
Richardson and Flash 2002).

(1)A ≈ KC�

(2)V ≈ KC−(1−�) = KR(1−�)

(3)logA ≈ logK + � logC

(4)logV ≈ logK + (1 − �) logR

In general, however, the power exponent β is not invar-
iant. Dynamic factors may affect its value (Wann et al. 
1988; Gribble and Ostry 1996), as shown by a recent study 
comparing elliptic drawing movements performed in air 
and water at the same average speed (Catavitello et al. 
2016). The speed-curvature law held in both conditions, 
but the exponent was close to 2/3 in air and 3/4 in water, 
indicating that the speed-curvature coupling is affected by 
the viscosity of the medium where the movement unfolds.

A major factor affecting the specific value of the expo-
nent β is determined by the shape of the drawn trajectory. 
Thus, deviations from the 2/3 value of the exponent were 
noticed for specific curves such as the asymmetrical lem-
niscate (Viviani and Flash 1995; Richardson and Flash 
2002; Flash and Handzel 2007). Several models based on 
the optimization of different kinematic costs (Richardson 
and Flash 2002, Huh and Sejnowski 2015) or on assuming 
non-Euclidean geometrical representations of movements 
(Flash and Handzel 2007; Bennequin et al. 2009; Polyakov 
et al. 2009) were developed to account for such devia-
tions. A thorough investigation of the shape dependency 
of the exponent has recently been carried out by Huh and 
Sejnowski (2015). They considered a wide set of planar 
convex curves that differ in terms of the spatial angular fre-
quency (Huh 2015). Angular frequency ν of a curve is the 
number of curvature oscillations per cycle. For instance, 
ν is equal to 2 for an ellipse, because the curvature profile 
fluctuates twice per cycle. At integer frequencies ν > 2, the 
curves resemble rounded regular polygons. In general, a 
convex curve with a rational frequency ν = m/n, where m 
and n are coprime integers (i.e., no common factors) and 
m ≠ 1, has a closed shape of period 2πn, and exhibits m 
degrees of rotational symmetry. For such pure frequency 
curves, Huh and Sejnowski (2015) described a spectrum 
of power laws with exponents covering a wide range. The 
exponent of the angular speed-curvature power law ranged 
from about 0.34 for a curve with ν = 2/33 up to about 0.90 
for a curve with ν = 6, and including an exponent of 0.65 
for the ellipse (ν = 2), close to the value reported in previ-
ous studies for the latter curve.

The finding that drawing different shapes results in 
very different values of the power exponent is important 
because it reveals potential physiological mechanisms 
underlying movement generation (see section Biologi-
cal constraints on speed-curvature relationships). Given 
the relevance of this issue for the present discussion, here 
we replicated part of the protocol by Huh and Sejnowski 
(2015) to verify the strong shape-dependency of the power 
exponent.
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Methods and results

We used the same eight curves included in Fig. 5 of Huh 
and Sejnowski (2015). The angular frequency ν of these 
curves was 2/33, 2/5, 4/5, 4/3, 2, 3, 4, and 6. These curves 
(typical size 10 cm) were presented on a sheet of paper 
that was placed on top of a digitizing tablet (Wacom Intuos 
ProS PTH-451, spatial resolution: 0.08 mm, sampling rate: 
200 samples/s). Three participants traced the curves con-
tinuously over 30 s with the tablet stylus (leaving no trace 
behind). They had previously given written informed con-
sent to procedures approved by the Institutional Review 
Board, and had been instructed to draw with fast and fluid 
movements without corrections. The tempo of the move-
ments (average speed) was indicated by a metronome with 
a period of 0.6 s. The x, y position-samples of the stylus tip 
were low-pass filtered (5 Hz cut-off, second-order, zero-
phase-lag Butterworth filter), and interpolated using cubic 
splines to obtain the first and second time derivatives. Lin-
ear regressions of log A versus log C (Eq. 3) was used to 
estimate the exponent (β) of a power law A = KCβ. Here 
and throughout the article, log denotes base 10 logarithm 
(log10).

Figure 2a shows the results for three different curves. 
Data were well fitted by a power law, but the power exponent 
β systematically increased with the angular frequency of the 
curve, in agreement with Huh and Sejnowski (2015). Only 
for the ellipse did the exponent comply with the 2/3 power 
law, while for the other two curves the exponents deviated 
substantially from 2/3. Notice that the fit of the power rela-
tionships was quite sensitive to the specific value of β, as 
shown by forcing other β values (Fig. 2b).

Figure 2c shows the best-fitting exponents for all eight 
drawn shapes plotted as a function of the respective angular 
frequency (ν). Again in agreement with Huh and Sejnowski 
(2015), the overall β versus ν relationship was S-shaped. The 
variance accounted for (r2) by the log–log linear regressions 
in each trial of each curve was greater than 0.83 (v = 6), 
0.86 (v = 4), 0.93 (v = 3), 0.97 (v = 2), 0.94 (v = 4/3), 0.87 
(v = 4/5), 0.72 (v = 2/5) and 0.55 (v = 2/33). Participants had 
some difficulty to trace accurately the curves with very high 
or very low angular frequencies, and the log–log regressions 

fitted the data less well than those at intermediate frequen-
cies, as also reported in Huh and Sejnowski (2015).

In sum, the present results confirm the strong shape 
dependency of the exponent of the speed-curvature power 
law, consistent with Bennequin et al. (2009) and Huh and 
Sejnowski (2015).

Empirical power laws do not depend 
on how curvature is computed

Although speed and curvature are mathematically independ-
ent (see above), in practice some spurious correlation 
between the two measured variables might result from the 
time discretization due to a finite sampling rate and from 
using temporal derivatives in the calculation of both speed 
and curvature. In other words, the time-sampled spatial coor-
dinates used to estimate local curvature might reflect to some 
extent also the speed of movement. This can be seen by re-
parametrizing curvature first with respect to x, y coordinates 
and then with  respect  to  t ime.  Thus,  f rom 
C =

|||
d�∕dx

ds∕dx

||| =
|d2y∕dx2|

[1+dy∕dx2]
3∕2 =

|||
d�∕dt

ds∕dt

|||, x =  f(t) and y = g(t), 

� = tan−1
(

dy∕dt

dx∕dt

)
, we can derive C =

||||
dx

dt

d2y

dt2
−

dy

dt

d2x

dt2

||||[
dx

dt

2
+

dy

dt

2
]3∕2  or using 

the dot notation for time derivatives.

In this section, we compare empirical speed-curvature 
relationships for crawling larvae using different sampling 
rates and different methods to calculate path curvature. To 
this end, we re-analyzed data presented in Zago et al. (2016).

Methods and results

For details on the experimental procedures and tracking of 
larvae behavior, see Gomez-Marin et al. (2011, 2012) and 
Zago et al. (2016). All procedures were in accordance with 
the ethical standards of the institution at which the experi-
mental recordings were performed. Briefly, Drosophila 
melanogaster larvae in the foraging stage crawled on a vis-
cous medium and were tracked at 7 frames/s, 90 μm/pixel. 
These sampling parameters have been shown to be fully 
adequate for the slow, small movements of these animals 
(Gomez-Marin et al. 2011, 2012). Three groups of larvae 
were exposed to different sensory environments, resulting 
in three different types of crawling trajectories, overshoot 
(n = 42 larvae), approach (n = 40), and dispersal (n = 41). 
The x, y position-samples of the larvae centroid were low-
pass filtered (0.07 Hz cut-off, second-order, zero-phase-lag 
Butterworth filter), and interpolated with cubic splines.

(5)C =
|ẋÿ − ẍẏ|

(ẋ2 + ẏ2)3∕2

Fig. 2   Dependence of the power exponent on the shape of human 
drawings. a Power laws for movement trajectories characterized 
by angular frequency (ν) equal to 4/5 (four-leaf), 2 (ellipse) and 4 
(rounded square), from top to bottom. Scatter plots of instantane-
ous angular speed and curvature on log–log scale. The data were 
best-fitted (black line), with β-exponent and variance accounted for 
(r2) as indicated in the insets. b Plots of r2 resulting from imposing 
β-exponents in the range 0–1 in the power function for the corre-
sponding drawings of panel (A). The best-fitting β-exponent is indi-
cated by the vertical dashed line. c Best-fitting exponents (blue trian-
gles) as a function of angular frequency (ν) of all eight drawn shapes

◂
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Curvature was then computed using three different meth-
ods: (1) as C =

|ẋÿ−ẍẏ|
(ẋ2+ẏ2)3∕2

 with the time parametrization 

(Eq. 5), (2) as the spatial derivative of the angle coordinate 
C =

|||
d�

ds

|||, (3) as the inverse of the radius of the osculating 

circle. Before computing dα/ds (method 2), we oversampled 
the original data by a factor 1000 (corresponding to a rate of 
7000 samples/s) in order to dilute any time dependence of 
the spatial coordinates. To compute the osculating circle 
(method 3), we oversampled the data by a factor of 10, and 
then we best fitted a circle to any 3 consecutive x, y samples. 
Next, we performed least-squares orthogonal-regression of 
log angular speed A versus log curvature C (Eq. 3), the latter 
being computed with one of the three methods described 
above.

Figure 3a shows a typical trajectory traced by a crawl-
ing larva in the overshoot condition. These trajectories 
were not associated with a constant progression speed 
or any simple kinematic pattern. Both the instantaneous 
angular speed and the local path curvature were widely 
modulated, yet they co-varied throughout (Fig.  3b). 
Notice that the time profiles of curvature derived with the 
three methods described above are essentially identical 
(for clarity, they are plotted with an offset in Fig. 3b). A 
log–log plot of angular speed versus curvature revealed a 
power law as a straight line whose slope corresponds to 
the power-exponent β (Fig. 3c). We found no statistically 
significant difference in the linear regression parameters 
(slope β and r2) between the results obtained with the 
three methods used to compute curvature (Kruskal–Wal-
lis ANOVA by ranks followed by multiple comparisons, 
P > 0.95 in all three groups of larvae). The median value 

of β was 0.78 (interquartile-range = 0.06), 0.78 (interquar-
tile-range = 0.08), and 0.76 (interquartile-range = 0.06) 
for the overshoot, approach, and dispersal conditions, 
respectively. The maximum difference between the slope 
β computed with one of the three methods and the slope 
computed with the other two methods was < 0.1% of the 
maximum value. Median value of r2 was > 0.91 for all 
three methods.

These results show that the empirical speed-curvature 
relationships of the crawling larvae are very little affected 
by the specific method used to estimate path curvature, 
indicating that the numerical calculations typically used 
are unlikely to introduce any significant cross-talk between 
curvature estimates and speed estimates, irrespective of 
the specific parametrization.

A power exponent close to 3/4 in crawling larvae is 
reminiscent of the value found for human drawing move-
ments in water (Catavitello et al. 2016), and thus it might 
depend on the viscosity of the medium (Zago et al. 2016). 
Alternatively, it could be attributed to the complex shape 
of the trajectories traced by the larvae. Irrespective of the 
origin, the deviation of the exponent from 2/3 reinforces 
the notion that the power exponent is not constant in bio-
logical movements.

Zago et al. (2016) also checked for the potential con-
tamination of speed-curvature relationships by noise in 
the data (Maoz et al. 2006). Their Fig. S1 shows that the 
values of β and r2 of the log–log regression of speed versus 
curvature depend little on the specific value of the low-
pass frequency cut-off used to filter the position data of 
the crawling larvae.
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Fig. 3   Empirical relation between angular speed and curvature in a 
crawling larva. a Trajectory of the larva centroid. Green circle indi-
cates starting position. Each point of the trajectory is colored accord-
ing to the instantaneous tangential speed. b Time course of the angu-
lar speed (A, red) and curvature (C, green) for the trajectory plotted 
in panel A. The three traces of curvature are plotted with an offset 
between each other and correspond to curvature computed as in Eq. 5 
(top), as the spatial derivative of the angle coordinate (middle), and as 

the inverse of the radius of the osculating circle (bottom). The dashed 
horizontal lines correspond to C = 0 in all three cases. c Scatter-plot 
of instantaneous angular speed A and curvature C on log–log scale. 
The data were best-fitted (red line) with β-exponent and variance 
accounted for (r2) as indicated in the inset. These data refer to curva-
ture computed according to method 1) above. In this example, β and 
r2 values differed by < 10−4 between the three methods
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A different way to look at speed‑curvature 
relationships

Since V = (ẋ2 + ẏ2)1∕2 = A∕C and C =
|ẋÿ−ẍẏ|

(ẋ2+ẏ2)3∕2
=

|ẋÿ−ẍẏ|
V3

, by 

substitution we obtain A = |ẋÿ − ẍẏ|1∕3C2∕3. For brevity, we 
denote the term |ẋÿ − ẍẏ| as D (same notation as in M/S):

or equivalently V = D1∕3C−1∕3. In logarithmic units, 
logA =

1

3
logD +

2

3
logC  o r  logV =

1

3
logD −

1

3
logC . 

Notice that, in Eq. 6, D depends simultaneously on both 
speed and curvature. In fact, using the formulas by de 
L’Hôpital and Faà di Bruno, we can rewrite:

Equation 7 makes explicit the simultaneous dependence 
of D on speed and curvature, since the term 

(
ds

dt

)3

 is the third 

power of the tangential speed, while the term 
(

dx

ds

d2y

ds2
−

dy

ds

d2x

ds2

)
 

is the curvature.
Therefore, Eq. 6 represents a simple mathematical iden-

tity and does not imply that A depends on two independent 
variables, D and C, because in the absence of constraints 
A and V remain mathematically independent of C and R. 
Moreover, D cannot be considered an independent predictor 
of V (or A) because D itself depends on V (or A).

For an arbitrary motion, in Eq. 6, A, D and C are all time-
varying functions along the traced curve. However, in the 
special case in which D does not vary with time throughout 
the movement, that is, when D1/3 = K = constant, Eq. 6 satis-
fies Eq. 1 with a power exponent of β exactly equal to 2/3. 
In other words, the special condition of D1/3 = K yields the 
2/3 power law for the speed-curvature consistently found for 
elliptic drawings (see above). In the following, we will con-
sider conditions that either satisfy or violate D1/3 = constant. 
First, we describe mathematical and physical examples, and 
then we consider biological constraints that result in a nearly 
constant value of D1/3.

The power law is not obligatory mathematically

Before we have used formal arguments to show that a given 
path of movement can be traced with different speed profiles, 
since the path specifies the instantaneous movement direc-
tion but not the speed. In this section we provide analytical 
and numerical calculations to demonstrate the same fact. 
To this end, we use the prototypical case of an elliptic path 
that, when drawn by humans or monkeys, typically complies 

(6)A = D1∕3C2∕3

(7)

ẋÿ − ẍẏ =
dx

ds

ds

dt

d2y

dt2
−

dy

ds

ds

dt

d2x

dt2
=
(
ds

dt

)3
(
dx

ds

d2y

ds2
−

dy

ds

d2x

ds2

)

with the 2/3 power law. In our simulations, the geometry of 
the curve is constant, while the kinematics is specified by 
means of the usual parametric representation in sine and 
cosine functions of the angle θt. However, we define differ-
ent time profiles for θt, with the result of obtaining for the 
same geometry different kinematics, and therefore different 
relationships between angular speed and curvature.

Methods and results

Figure 4 shows the results of three different simulations of 
elliptic motion. We present both the analytical solutions and 
the results of numerical calculations (Fig. 4d). For the lat-
ter, the time-discrete trajectories were interpolated (cubic 
splines) to obtain first and second time derivatives, which 
were then used to calculate curvature C and angular speed A.

In all three simulations, the kinematics is defined by the 
equations:

Only in the first simulation (top panel, Fig. 4b) does the 
angle θt have a simple, linear dependence on time (�t = t). 
In the other two cases, θt has a more complex, non-linear 
time-dependence (middle and bottom, Fig. 4b). In particu-
lar, the target slows down as curvature increases (toward 
the vertices), progressively accelerates, and slows down as 
curvature decreases, in the first, second and third simulation, 
respectively. As a result, the angular speed A and curvature 
C co-vary throughout the movement in the first case (top, 
Fig. 4c), whereas the relationship between A and C changes 
over one cycle for the other two cases (middle and bottom, 
Fig. 4c). Accordingly, logA is linearly related to logC with 
an exponent β equal to 2/3 in the first case (top, Fig. 4d), 
whereas the relationship logA versus logC is complex and 
the 2/3 power law is violated in the other two cases (middle 
and bottom, Fig. 4d).

To see why this happens, we remind that the critical 
condition to satisfy exactly the 2/3 power law is given by 
D = |ẋÿ − ẍẏ| = constant. By taking the time derivatives of 
Eq. 8 and performing straightforward calculations, we find 
that D = ab

(
2𝜋||𝜃̇||

)3. Now, for the first case we considered 
(�t = t), we find that D = ab(2�)3 = constant, and A = KC2/3 
is satisfied exactly. In fact, the notion that orthogonal har-
monic oscillations (such as those of Eq. 8 with �t = t) gen-
erate motions that comply with the 2/3 power law has long 
been established (Lacquaniti et al. 1983). Notice further 
that, if we scale up the motion speed by a constant (�t = ct),  
then D scales up with c3 and the 2/3 power law still holds 
but the A–C curve is shifted upwards, consistent with the 
published results of the effects of changes in average speed 
of human hand-drawing (Lacquaniti et al. 1983). In contrast 
with the previous cases, in the elliptic trajectories in which 
θt has a non-linear time-dependence (as in the second and 

(8)x = a sin
(
2��t

)
, y = b cos

(
2��t

)
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third simulations of Fig. 4), D is not constant any more but 
changes drastically (with the 3rd power of the rate of change 
of the angle θt). Therefore, in all such cases, the 2/3 power 
law is mathematically violated.

The power law is not obligatory in physical 
systems

In this section, we address another theoretical issue about the 
nature of the speed-curvature power-law: Does any object 
obey necessarily the law irrespective of the underlying forces 
because of the way the law is derived? If this were the case, 
we should be able to derive the law also for the motion of 

any arbitrary, inanimate body subjected to non-biological 
forces. In the following, we provide examples of the motion 
of objects affected by gravitational, drag or elastic forces, 
and we show that most of them violate the speed-curvature 
power law, while one example complies with the law.

Methods and results

Figures 5a–d show the results of simulations of a few dif-
ferent systems whose kinematics is dictated by the dynamic 
equations provided in Fig. 5e. In all cases, the dynamic equa-
tions of motion were numerically integrated by means of 
time-step Euler integration. The time-discrete, unfiltered tra-
jectories were interpolated (cubic splines) to obtain first and 

DBA C

E

Fig. 4   Mathematical models and numerical simulations of one 
ellipse traced with three different kinematics (top, middle, bottom 
row). a Each point of the ellipses is colored according to the instan-
taneous tangential speed. The defining equations for the angles θt are 
in the insets. The moving point slows down with increasing curva-
ture, progressively accelerates over one cycle, and slows down with 
decreasing curvature in the top, middle and bottom panels, respec-
tively. The bottom inset reports the general parametric equations for 
the geometry and kinematics of the ellipses, with a = 10, b = 5 cm. 

b Time course of θt for the three kinematic cases depicted in (A) 
over one cycle. c The corresponding time profiles of angular speed 
A (magenta) and curvature C (green). d Log–log plots of A and C, 
for both the analytical (red) and the numerical (black) solutions. For 
comparison, blue dashed lines with 2/3 slope are shown in the middle 
and bottom panels. e Summary of the main mathematical expressions 
for the speed-curvature relation of ellipses traced with different kin-
ematics
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second time derivatives, which were then used to calculate 
curvature and angular speed.

The first physical system we consider is given by an ideal 
binary star consisting of two bodies of equal mass, under 
Newton’s law of universal gravitation (Fig. 5a). The gravi-
tational pull between the two bodies causes them to move in 
elliptic orbits around their common center of mass. Unsur-
prisingly, we find that the instantaneous angular speed of 
each body can be either very large or very small for the same 
values of local curvature. The log–log plot of angular speed 
and curvature shows that the power law is clearly violated. 
Once more, the result can be predicted by considering that 
D = |ẋÿ − ẍẏ| is not constant for this system (Fig. 5e). Simi-
lar results are obtained (data not shown) when we consider 
the case where one body is massive, such as the Sun, and 
the other one is much less massive, such as a planet orbiting 
around the Sun. We then rediscover Kepler’s observation 
that in perihelion (the point closest to the Sun) the planet is 
moving faster than in aphelion (the point farthest from the 
Sun). Since these two points have the same curvature, it is 
clear that speed and curvature do not co-vary, violating the 
power-law.

The second physical system consists of a projectile 
launched in ballistic trajectory under the action of grav-
ity (Fig. 5b). We consider two cases, namely that the pro-
jectile motion is affected (thin line) or unaffected (thick 
line) by a drag force proportional to speed. Without drag, 
angular speed and curvature co-vary, and the 2/3 power 
law is obeyed. With drag, instead, the law is violated. In 
fact, by considering the corresponding dynamic equa-
tions (Fig. 5e), we see that D is constant without drag, 
but is non-constant with linear drag. Notice that D is non-
constant also with quadratic drag (valid at high speeds): 
D = ||− gẋ − k(ẋẏ2 − ẏẋ2)||.

The third physical system is a simple pendulum under 
gravity, without drag (Fig. 5c). This system provides a dra-
matic violation of the speed-curvature power-law (La Sca-
leia et al. 2014). The oscillations of the pendulum trace a 
circle and thus curvature is constant throughout, while angu-
lar speed changes throughout, being zero at the extremes of 
the swing and maximal in the middle point. Accordingly, 
the log–log plot of angular speed vs. curvature yields a line 
parallel to the ordinates axis.

Finally, we consider a system consisting of a mass con-
nected to two orthogonal linear springs, whose elastic force 
is proportional to the distance from equilibrium length 
(Fig. 5d). Depending on the initial conditions and parameter 
values, speed and curvature can approximate a power law, 
but in general the power law is not obeyed exactly.

Different biological constraints may give rise 
to the speed‑curvature power law

We have previously argued that the power law is not a trivial 
relationship given by mathematics or physics. Here we con-
sider a number of potential physiological constraints that 
may underlie non-trivial speed-curvature power laws found 
in empirical studies of biological movements. One approach 
consists in investigating specific kinematic conditions under 
which D in Eq. 6 is constant or nearly constant, thus yield-
ing speed-curvature relationships closely obeying the 2/3 
power law. As we mentioned above, Lacquaniti et al. (1983) 
showed that orthogonal harmonic oscillations at the same 
frequency generate 2D elliptic drawings that always comply 
with the 2/3 power and, for such condition, D in Eq. 6 is 
exactly constant.3 Even in the case of harmonic oscillations 
that are not orthogonal, such as those generated by coupled 
angular motions at the limb joints, D can vary little with 
time. Thus, Soechting and Terzuolo (1986) and Schaal and 
Sternad (2001) showed that, for periodic drawings of ellipses 
in 3D, the condition D ≈ constant is satisfied by sinusoidal 
motion of the limb segments with appropriate inter-segmen-
tal phase shifts. Dounskaia (2007) elaborated further on the 
implications of sinusoidal angular motions using a simpli-
fied model of planar 2D drawing movements. She showed 
that the condition D1/3 ≈ constant holds when the shoulder 
and elbow perform sinusoidal angular motions of moder-
ate amplitudes with a substantial phase offset, whereas the 
condition is violated (D1/3 widely time-varying) when the 
angular motions are very large or very small (consistent with 
previous experimental observations by Wann et al. 1988 and 
Schaal and Sternad 2001).

However, only some biological movements are subserved 
by simple sinusoidal motions. For instance, the small hand 
drawing movements of the convex curves that we described 
earlier (see Empirical speed-curvature power laws for human 
drawing have different exponents) involve important con-
tributions by wrist and fingers (in addition to shoulder and 
elbow), which exhibit considerable harmonic distortion and 
whose phase is quite variable (Lacquaniti et al. 1987). Since 
the different convex curves of Fig. 2 (as well as those of Huh 
and Sejnowski 2015) were all of about the same size and 
were performed at about the same average speed, the dif-
ferent values of the exponent β as a function of curve shape 
cannot be explained on the basis of the average speed and 
amplitude of oscillation at the shoulder and elbow joints 
(Dounskaia 2007).

3  Notice, however, that orthogonal harmonic oscillations at a differ-
ent frequency generate Lissajous motions that do not comply neces-
sarily with the 2/3 power law (Lebedev et al. 2001).
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A different perspective on the significance of the con-
straint was brought up by consideration of the geometrical 
structure of the internal representations of human move-
ments and perceptions (Pollick and Sapiro 1997; Flash 
and Handzel 2007; Polyakov et al. 2009; Bennequin et al. 
2009). Although Euclidean geometrical representations are 
often assumed, there is growing evidence that both move-
ment planning and visual perception may rely on repre-
sentations drastically departing from Euclidean geometry, 
such as affine and equi-affine geometries (Koenderink and 
van Doorn 1991; Bennequin et al. 2009). Following this 
approach, Pollick and Sapiro (1997) and Flash and Hand-
zel (2007) showed that D1/3 = constant implies that the 
equi-affine speed Vea is constant, since Vea = |ẋÿ − ẍẏ|1∕3 
(Guggenheimer 1977). Therefore, the 2/3 power law is pre-
dicted by assuming a constant equi-affine speed through-
out the movement. On the other hand, a combination of 
Euclidean, affine, and equiaffine geometries can generate 
variable power law exponents, depending on the shape of 
the trajectory, consistent with the observations by Huh 
and Sejnowski (2015), replicated in our earlier section of 
this article.

Still a different approach relies on the assumption that the 
motor system optimizes a given cost function along the tra-
jectory. In particular, the minimum-jerk model has fre-
quently been associated with the speed-curvature power law 
(Wann et al. 1988; Viviani and Flash 1995; Todorov and 
Jordan 1998; Richardson and Flash 2002; Huh and Sejnow-
ski 2015). This model assumes the minimization of squared 
hand jerk (the rate of change of acceleration) summed over 
movement duration T: 

T

∫
0

(x⃛2 + y⃛2)dt. Todorov and Jordan 

(1998) argued that the constraint of the 2/3 power law pro-
vides an efficient solution to the minimization of the total 
jerk along a prescribed trajectory, since it sets the normal 
component of jerk to zero. Indeed, by taking time derivatives 
and canceling terms, the expression ẋÿ − ẍẏ = constant is 
shown to be equivalent to ẋ

ẏ
=

x⃛

y⃛
, which implies that the jerk 

vector should be parallel to the tangential velocity vector, so 
that the jerk component in the normal direction is zero 
(Soechting and Terzuolo 1986; Todorov and Jordan 1998). 
Huh and Sejnowski (2015) expressed the total squared-jerk 
cost to be minimized in the Frenet–Serret moving frame. 
Remarkably, this model revealed scale-invariant features of 
2D curved movements and accounted for a spectrum of 
power laws with a wide range of exponents for different pure 
frequency curves (see above), as well as for mixtures of 
power laws for multi-frequency curves such as those associ-
ated with scribbling. This approach is related to the Cartan’s 
moving frame method used by Bennequin et al. (2009), 
which also predicts a mixture of geometries compatible with 
a spectrum of power exponents, not just the 2/3 power expo-
nent. Lebedev et al. (2001) argued instead that the 2/3 power 
law arises from the principle of least action; viz. if a move-
ment between two points of a given path obeys the 2/3 power 
law, then the amount of work required to execute a trajectory 
in a fixed time is minimal. In fact, the principle of least 
action states that the integral 

T

∫
0

ẋ3(
d2y

dx2
)dt must be minimal 

over movement duration T, and this condition is satisfied 
when ẋ3

(
d2y

dx2

)
= constant. Since ẋÿ − ẍẏ = ẋ3(

d2y

dx2
), it follows 

that a movement obeying the 2/3 power law satisfies the 
principle of least action (Lebedev et al. 2001).

Omitted variable bias hypothesis

M/S argue that the Equation A ≈ KC� (Eq. 1) and the equiva-
lent ones (Eqs. 2–4) typically used to assess speed-curvature 
relationships in biological movements are inappropriate, 
because these equations omit the predictor variable D1/3 that 
is included in the expression A = D1∕3C2∕3 (Eq. 6). However, 
this argument is flawed since D of Eq. 6 is not an independ-
ent variable, but depends on both A and C (or V and R), as 
we showed in an earlier section (A different way to look 
at speed-curvature relationships). Therefore, D cannot be 
considered an independent predictor of A (or V), because 
D itself depends on A (or V). If one applied to experimental 
data a statistical regression based on Eq. 6 (as M/S do), one 
would learn nothing at all about the physiological under-
pinnings of the relationship between speed and curvature, 
because Eq. 6 is a mathematical identity that must always 
be satisfied, apart from measurement errors. In fact, the only 
interest in performing a statistical regression on Eq. 6 (or its 
log–log equivalent) would lie in the study of noise effects 
(see below). This is acknowledged by M/S when they state 
that a statistical regression analysis that included D1/3 as a 
predictor variable would always find the exponent of C in 
Eq. 6 to be exactly equal to its true value 2/3. Accordingly, 
their application of the principles of omitted variable bias 

Fig. 5   Physical models and numerical simulations of the kinematics 
of different systems subject to gravitational, drag or elastic forces. a 
Two gravitating bodies of equal mass, such as two equal stars orbiting 
around their common barycenter. b Ballistic projectiles thrown with 
an initial speed and accelerated downwards by gravity in the pres-
ence (thin lines) or absence (thick lines) of drag. c Simple pendulum 
accelerated by gravity in the absence of drag. d Two uncoupled linear 
springs. Subpanels in A–D show in clockwise order: angular speed 
(magenta) versus time, x coordinate versus y coordinate of the mov-
ing object, log–log plot of angular speed and curvature, and curva-
ture (green) versus time. e Differential equations used to simulate the 
different physical systems, together with the analytical assessment of 
whether or not the term D = constant and the 2/3 power law is satis-
fied. Parameters are: k = 0.04, r = instantaneous distance between the 
two bodies for gravitation; k = 0.09 and g = 9.81 m s−2 for the pro-
jectiles; L = 1 m and g = 9.81 m s−2 for the pendulum; kx = 1.78 and 
ky = 0.33 s−2 for the springs

◂
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(OVB, see Wooldridge 2012) to the speed-curvature rela-
tionship is ill-grounded, since OVB applies to linear regres-
sions of a dependent variable on one or more independent 
variables, and here C is an independent variable but D is not.

Given the circularity of M/S argument based on a math-
ematical identity, it is totally unsurprising that M/S are able 
to calculate the value of the deviation of the exponent β of 
Eq. 1 from the 2/3 value based on Eq. 6. Indeed, this had 
already been shown by Maoz et al. (2006), who performed 
the statistical regressions to show the potential effects of 
measurement noise. Maoz et al. (2006) showed that, if one 
considers all variables as random variables affected by meas-
urement noise, A = D1∕3C2∕3 (Eq. 6) implies that � =

2

3
+

�

3
, 

where β denotes the linear regression coefficient of logA ver-
sus logC and ξ denotes the linear regression coefficient of 
logD versus logC. In turn, � =

Cov(logC,logD)

Var(logC)
 where Cov and 

Var are the covariance and variance of the indicated varia-
bles. Therefore, if logD and logC (as derived from experi-
mental measurements) are statistically uncorrelated, 
Cov(logC, logD) = 0, ξ = 0 and β = 2/3, thus fulfilling 
exactly the 2/3 power law. For all other cases, instead, 
Cov(logC, logD) ≠ 0, ξ ≠ 0 and β ≠ 2/3. Therefore, the 
experimental finding of a range of β values (including the 
special case of β = 2/3) for different kinds of biological 
movements implies that the control systems are able of estab-
lishing non-trivial co-regulations of path geometry and 
kinematics.

As we discussed at length before (see Different biologi-
cal constraints may give rise to the speed-curvature power 
law), D is not a predictor variable but its behavior, whether 
it is nearly constant or widely time-varying throughout a 
movement, can tell us something about the physiological 
mechanisms underlying the generation of a given biologi-
cal movement (Lacquaniti et al. 1983; Soechting and Terzu-
olo 1986; Viviani and Flash 1995; Pollick and Sapiro 1997; 
Todorov and Jordan 1998; Maoz et al. 2006; Dounskaia 
2007; Flash and Handzel 2007; Polyakov et al. 2009; Benne-
quin et al. 2009). Interestingly, the message stemming from 
these previous studies goes in the opposite direction to that 
of M/S. Rather than being mathematical/statistical artifacts, 
empirical speed-curvature power laws are real and require 
a critical investigation of the properties of D to account for 
compliance or deviation of empirical β values relative to the 
prototypical 2/3 value found in elliptic drawings, and to test 
different hypotheses about the physiological origin of the 
speed-curvature relationships.

Real statistical issues with the power law analysis

A general caveat is that caution is necessary before claiming 
that experimental measurements conform to a power law, 

unless a mechanistic model of the system dynamics spe-
cifically predicts such a law (Stumpf and Porter 2012). In 
theory, a power law should be scale invariant, that is, the 
functional relationship between the two variables should be 
independent of their magnitude. In practice, few empirical 
phenomena obey power laws for all values of the variables, 
and therefore the corresponding law should be defined only 
over a specified domain.

Statistical support for a power law is often searched using 
log–log plots, given the simplicity of this analysis (the expo-
nent of the law being found by linear regression). This is also 
the case for most studies of the speed-curvature power law. 
A common rule of thumb to assess a candidate power law 
is that it should exhibit an approximately linear relationship 
on a log–log plot over at least two orders of magnitude in 
both the x and y axes (Stumpf and Porter 2012). For instance, 
Fig. 3 shows that the log–log regressions of speed versus 
curvature for the experimental data with crawling larvae 
comply with this criterion (see also Zago et al. 2016). When 
this criterion is not fulfilled, there are additional statistical 
tests that can be used to validate power law distributions 
(Clauset et al. 2009).

One drawback of using log–log regressions is that they 
tend to de-emphasize the error of data points at the higher 
ends of the range of values, i.e. higher speeds and curvatures 
in the present case. Schaal and Sternad (2001) compared 
log–log regressions and nonlinear regressions of speed ver-
sus curvature for drawing of ellipses in 3D space, and found 
that log–log regressions slightly but systematically underes-
timated the absolute deviations from the coefficient expected 
from the 2/3 power law. Therefore, when high speeds and 
curvatures are important for a specific study, nonlinear 
regressions should be used instead of log–log regressions.

Correlation versus causation

In several experiments dealing with the speed-curvature 
power law, the path was unconstrained, so that both instan-
taneous curvature and speed can vary freely, and indeed the 
point of the law is that their changes are tightly correlated 
(coupled) between each other. On the other hand, it is incor-
rect to state that “Since neither of these variables [i.e., cur-
vature or speed, our note] is manipulated under controlled 
conditions, any observed relationship between them cannot 
be considered to be causal” (M/S, pg. 1836). In fact, in a 
series of previous experiments, movement was guided by 
asking participants to follow with the pen tip the inner edge 
of a Plexiglas template cut by a numerical control milling 
machine (Lacquaniti et al. 1983; Catavitello et al. 2016). 
Each template resembled an ellipse but consisted of two 
pairs of circular arcs with different radii. A set of 11 such 
templates was built by varying the radii so that the shape of 
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the templates varied progressively from a circle to a very 
elongated pseudo-ellipsis, while the perimeter was kept 
constant. This step-response paradigm allowed to address 
the relation between the geometry of the trajectory and the 
speed of execution in a controlled manner. Recordings from 
each template resulted in a pair of data points in the log 
angular speed versus log curvature plot, one for the more 
curved and the other one for the less curved portions of the 
trajectory. All data points were well fitted by power func-
tions, but the power exponents decreased with increasing 
average speed of execution (Fig. 4 in Lacquaniti et al. 1983). 
Using the same templates, Catavitello et al. (2016) investi-
gated the speed changes occurring at the transitions between 
the two circular arcs and found that they occurred before the 
radius changed from large to small, possibly reflecting an 
anticipatory control of path trajectory (Tramper and Flan-
ders 2013), but the reverse transition (small to large radius) 
did not involve a similar anticipation. Several other studies 
have explored the manual tracing of template figures, thus 
manipulating curvature under controlled conditions (e.g., 
Wann et al. 1988; Viviani and Flash 1995; Todorov and Jor-
dan 1998; Richardson and Flash 2002; Flash and Handzel 
2007; Huh and Sejnowski 2015).

On a theoretical basis, the causal relationship between 
curvature and speed is predicted by models assuming that 
the geometrical shape of a given movement is pre-planned 
while the speed profile results from movement optimiza-
tion (Wann et al. 1988; Viviani and Flash 1995; Todorov 
and Jordan 1998; Richardson and Flash 2002; Flash and 
Handzel 2007; Huh and Sejnowski 2015) or non-Euclidean 
implementations of the plan (Pollick and Sapiro 1997; Flash 
and Handzel 2007; Polyakov et al. 2009; Bennequin et al. 
2009). Specifically, Huh and Sejnowksi (2015) showed that 
movement speed depends not only on the instantaneous cur-
vature, but also on the nearby curvature within 1 rad of the 
angle coordinate α, suggesting that the angle coordinate and 
therefore curvature only need to be planned 1 rad ahead. 
This is consistent with the result of Tramper and Flanders 
(2013) that planning (or anticipation) takes over longer dis-
tance and time when the radius changes from large to small, 
and shorter distance and time when the radius changes from 
small to large.

M/S rightly point out that “muscle forces will not be con-
sistently related to the curvature and velocity of the move-
ment” (pg. 1836). Indeed, it has been long known that the 
changes in electrical muscle activity (EMG) and joint tor-
ques follow a time course different from that of hand or joint 
kinematics. For instance, drawing of ellipses in 3D tends to 
comply with the 2/3 power law and involves sinusoidal angu-
lar motions at the shoulder and elbow joints (Soechting et al. 
1986; Schaal and Sternad 2001). Instead the corresponding 
joint torques and EMG activities deviate substantially from 
sinewaves (Soechting et al. 1986). The relationship between 

neural commands, muscle forces, joint torques, and hand 
kinematics is very complex, being stochastic, non-linear, and 
closed-loop. For instance, due to the existence of sensory 
feedbacks with substantial time delays, the muscle forces 
do not simply affect movement output, but in turn they are 
affected by the movement via the feedback loops. Therefore, 
the inference drawn by M/S that “An alternative to a causal 
explanation of the power law is that the law is an inher-
ent characteristic of the mathematical relationship between 
measures of curvature and velocity obtained during any 
curved movement” (pg. 1836) is logically a non sequitur, 
given the complex relationship between muscle forces and 
movement kinematics.

Conclusion

Although some of the arguments and simulations we pre-
sented probably appear trivial to mathematically oriented 
readers, they are important to be clarified since illusory 
issues are still lingering around the speed-curvature power 
law, as demonstrated by M/S paper. We believe that our anal-
yses are sufficient to refute the argument that “the power law 
of movement is an observation forced by the mathematical 
relationship between measures of the curvature and veloc-
ity of movement that are used in power law research” (M/S, 
pg. 1841).

Contrary to M/S conclusion, we maintain that the speed-
curvature power law is real and it applies to a wide variety of 
biological movements with different values of the exponent. 
The issue that remains to be solved concerns the physiologi-
cal origins of the power law. But this is a different topic to 
be covered in a forthcoming article.
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