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Relation Between Velocity and Curvature in Movement:
Equivalence and Divergence Between a Power Law

and a Minimum-Jerk Model

John Wann, Ian Nimmo-Smith, and Alan M. Wing
Medical Research Council Applied Psychology Unit, Cambridge, England

Unconstrained hand movements typically display a decrease in hand speed around highly curved
sections of a trajectory. It has been suggested that this relation between tangential velocity and
radius of curvature conforms to a one-third power law. We demonstrate that a one-third power
law can be explained by models taking account of trajectory costs such as a minimum-jerk
model. Data were analyzed from 6 subjects performing elliptical drawing movements of varying
eccentricities. Conformity to the one-third power law in the average was obtained but is shown
to be artifactual. It is demonstrated that asymmetric velocity profiles may result in consistent
departures from a one-third power law but that such differences may be masked by inappropriate
analysis procedures. We introduce a modification to the original minimum-jerk model by
replacing the assumption of a Newtonian point-mass with a visco-elastic body. Simulations with
the modified model identify a basis for asymmetry of velocity profiles and thereby predict
departures from a one-third law commensurate with the empirical findings.

Velocity and Curvature Effects

Hand trajectories in free space demonstrate remarkable
reliability and are generated with apparent simplicity, given
the computational complexities encountered. The apparent
ease with which human actions are controlled belies the
difficulty in programming an anthropomorphic robot for
similar tasks in a changing environment. An understanding
of the nature of such control and the generation of adequate
descriptive models are both contingent upon empirical obser-
vations of stable features of such trajectories and upon their
relevance to the efficacy of movement. In this respect, seem-
ingly minor features of everyday movements may provide the
key to evaluating the adequacy of more global descriptions of
human control. The scaling of velocity with movement time
and distance, for instance, has been well documented and is
generally accepted as relevant to the modeling of human
motor control. A rather more esoteric observation has been
the precise relation between instantaneous velocity and local
curvature in a trajectory. This latter feature has received less
general attention but provides a local description of the un-
folding of planned movements and as such provides a poten-
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tially powerful tool for the appraisal of motor models or
emergent control.

The dependence of velocity upon trajectory curvature was
noted in a number of early studies of human upper-limb
control (Binet & Courtier, 1893; Jack, 1895). Jack (1895)
made the specific observation that "velocity of a curve varies,
roughly speaking, with the radius of curvature" (p. 476). These
early observations were given reemphasis through the work
of Viviani and colleagues who proposed the "isogony princi-
ple" (Viviani & Terzuolo, 1982) and the "two-thirds power
law" (Lacquaniti, Terzuolo, & Viviani, 1983). The isogony
principle is based on the observation that within a "unit of
action," equal angles are described in similar times (even
though arc length may vary). The two-thirds power law can
be seen as qualifying Jack's (1895) observation by proposing
a specific relation between the geometric properties of the
trajectory (curvature, C) and the kinematics (angular velocity,
A) of the movement:

A(t) = K.C(t?» (1).

This may also be written in terms of tangential velocity ( V)
and the radius of curvature (R ) and empirically tested through
regression of the natural logarithms of Fand R:

|«|<oo (2)

(3)

This power law serves to describe a generally observable
characteristic of upper limb movements: Hand speed drops
when negotiating highly curved portions of a trajectory, in a
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VELOCITY AND CURVATURE IN MOVEMENT 623

manner similar to that of a vehicle negotiating a curved road.
The extent to which speed (tangential velocity) is scaled down
is described by the exponent in Equation 2. An increase in
this exponent means greater scaling, whereas if the exponent
approaches zero, velocity becomes independent of curvature
and is purely dependent upon the global scaling of the velocity
gain factor (K).

The relevance of such a mathematical description, when
we consider the development of movement control, is some-
what vague. There has been little insight into how or why
such a relation might emerge within an ecologically bounded
system. One interesting observation by Lacquaniti et al.
(1983) was that the one-third condition is satisfied if curved
motion is produced by coupling two orthogonal (i.e., x, y)
sinusoids, independent of phase (at 0° and 180° phase, motion
is along a straight line and hence outside the limits of Equation
2).

At first impression, this seems an interesting observation.
We feel it is prudent, however, to be critical with regard to
the functional significance of sinusoidal motion. There is little
in the way of evidence to suggest that the sinusoid has
biological rather than mathematical relevance. This may seem
a contentious statement, given the wealth of research that has
utilized the principles of harmonic oscillators (e.g., Holler-
bach, 1980, 1981; Kelso, Holt, Rubin, & Kugler, 1981). The
underpinning of such work has been the parallel between the
behavior of the human motor system and that of an idealized
mechanical system, such as an undamped mass spring, that
conforms to sinusoidal motion. A literal transposition from
this mechanical model to human behavior, however, is ob-
viously unjustified as Saltzman and Kelso (1987; note 4)
pointed out. Hollerbach (1981) also emphasized that the
sinusoid was adopted purely for "mathematical convenience"
(pp. 6, 10), and his model is applicable to a wide range of
oscillations. Sinusoidal motion has been used as a convenient
and useful approximation of human oscillatory' motion. We
suggest, however, that there has been little to substantiate its
physiological rather than mathematical relevance. It is per-
haps also relevant to note that recent motor models using
nonlinear oscillators such as the Van der Pol equation (see
Kay, Kelso, Saltzman, & Schoner, 1987) also depart from
such motion. Sinusoidal motion can be approximated only
by a Van der Pol oscillator with a very small escapement
component, which in turn undermines the advantages of a
stable limit cycle in its response to external perturbations.

We suggest that it is more useful to acknowledge that the
one-third law may hold for a wide range of coupled oscilla-
tions, many of which may be perceived as having greater
psychological or biological logic underpinning them, than to
propose that the motor system conforms to pure sinusoidal
motion for the production of oscillatory movement. This
statement does not undermine the validity of research analyz-
ing motion in terms of coupled sinusoidal components (e.g.,
Soechting, Lacquaniti, & Terzuolo, 1986; Soechting & Ter-
zuolo, 1986) but emphasizes that such an approach is essen-
tially a description rather than a theory of control. Such a
description based on a sine wave provides a yardstick for
appraising deviations from regularity. Soechting et al. (1986)
undertook such an approach and noted the deviations from

sinusoidal motion of wrist velocity, ranging from 8% to 37%
along a single axis, which obviously leaves scope for a wide
range of alternative models.

Equivalence of Minimum-Jerk Motion to a Power
Law

An interesting criterion for the organization of biological
motion is the minimum-jerk model proposed by Flash and
Hogan (1985). This model provides a closed-form solution to
the problem of negotiating a given trajectory while minimiz-
ing transients in acceleration (jerk)- For point-to-point arm
movements along a curved trajectory, Flash and Hogan (1985)
have shown that this model can exhibit behavior equivalent
to the isochrony principle of Viviani and Terzuolo (1982).
The attraction of such a model is that it can provide a suitable
time history for an acceleration function (from which joint
torques may be derived), based on a measure of kinematic
smoothness. From introspection, smoothness of movement
seems to be something that the individual is normally aware
of during or following motion. Hence, we might conceive of
a child refining trajectories by trial-and-error learning until
finally arriving at those which feel smooth. Despite evidence
that jerk costs may be reduced during development (Wann,
1987), this plausible argument has a major flaw. The criterion
chosen by Flash and Hogan (1985) was the minimization of
the mean-squared value of the third derivative of position.
Primary sources of afference in the human body provide
information about relative position (joint angle receptors) or
stretch and rate of stretch (muscle spindles). The crucial
question is how a system that primarily senses joint angle,
stretch, and rate of stretch could know about third derivatives.
In support of this approach, it can be demonstrated (Nimmo-
Smith, 1988; Wann & Nimmo-Smith, 1988) that a model
exploiting the visco-elastic nature of the human limb (related
to ideas presented briefly later in this article) can provide
perceptual information equivalent to that required by a de-
velopmental application of the Flash and Hogan model.

A less constrained version of the minimum-jerk model was
described by Nelson (1983). This version allows acceleration
to be non-zero at the movement endpoints and hence to
satisfy the conditions normally present during repetitive,
back-and-forth motion. The solution to the minimization is
a quintic polynomial, whose coefficients are determined by
the boundary conditions on x(l) and its higher derivatives
(Nelson, 1983). Figure 1 compares the effect of coupling two
such quintic motions with two coupled sinusoidal motions
(both at 90° phase) to produce an ellipse (eccentricity = .80,
cyclic frequency 1 Hz). It is obvious that the two motions
would be empirically undistinguishable, and both approaches
result in a one-third power law for the velocity-radius of
curvature relation. It should also be noted that other models
including "minimum energy" (Nelson, 1983) and "best stiff-
ness" (Hasan, 1986) may produce very similar results.

It is worth considering what conditions would be necessary
within the human motor system to generate either motion.
Sinusoidal motion is sustained within an undamped mass-
spring system, but as already discussed, this can be considered
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624 J. WANN, I. NIMMO-SMITH, AND A. WING

Figure 1. Simulated elliptical motion to compare a minimum-jerk
model with sinusoidal motion. Inset: Spatial patterns for a .80 ellipse
performed at 1-Hz cyclic frequency. (SINE = simulation with sinus-
oids; MINJERK = minimum-jerk model.) Upper panel: Overlaid veloc-
ity profiles for both models. (XVEL. = velocity along the x-axis; Y
VEL. = velocity along the y-axis for both simulations.) Middle panel:
Tangential velocity (TAN. VDL.) and curvature (CURV.) records for the
minimum-jerk model, displaying the reciprocal relation typical of a
power law. Lower panel: Regression of the natural logarithms of
tangential velocity and radius of curvature for both models, to dem-
onstrate the equivalence to a 'A power law. (Minimum-jerk model
adapted from equation in Nelson, 1983).

only as a weak metaphor of human muscular control. A more
acceptable and widely used model is one that acknowledges
the presence of inherent dissipative forces, such as a linear
second-order, damped mass-spring model. Cyclical motion
may be maintained in such a system by reciprocal shifts in
the equilibrium point at each half-cycle, but the damping
term introduces skewness into the sinusoidal motion. A fur-
ther option is the implementation of a nonlinear oscillator
that can balance the energy losses within the system to main-
tain a stable cycle. Despite being an interesting theoretical

suggestion, such limit cycles lack any physiological underpin-
nings with respect to human muscular control (Kay et al.,
1987, p. 189). In addition, as discussed earlier, sinusoidal
motion arises in limit cycle systems, such as the Van der Pol
(Kay et al., 1987), only if they have low stability.

In contrast, the minimum-jerk approach is not contingent
upon a specific model of the muscular system. In a simple
damped mass-spring system, minimum-jerk trajectories may
be generated by specifying a suitable virtual trajectory (time
history of the shift of the equilibrium point). In principle, this
may be through the reciprocal action of agonists and antago-
nists, while maintaining constant stiffness (Hogan, 1984), or
through the modulation of both reciprocal drives and coacti-
vation with time (Berkinblit, Feldman, & Fukson, 1986;
Feldman, 1981). Cyclical motion may be maintained by a
cyclic reiteration of the virtual trajectory, with trajectory
corrections to perturbations resulting from the self-equilibrat-
ing properties of such a system, (Bizzi, Accornero, Chappie,
& Hogan, 1984).

The simulations of elliptical trajectories in this article were
produced by linking two minimum-jerk "oscillations"
(pieccwisc polynomial periodic functions) at 90° phase. The
four via-points of an ellipse (extremes of the x,y axes) can be
achieved by scaling the amplitude for orthogonal motions
(scaling the virtual trajectory) without scaling the natural
frequency of the system. In this respect, the minimum-jerk
model mimics the behavior of the sinusoidal model proposed
by Lacquaniti et al. (1983). The primary difference between
the two approaches, however, is that minimum-jerk is a
prescription for movement, based upon assumptions of hu-
man ontogeny and intent, that exploits the properties of the
muscular system, whereas a sinusoidal model is the simplest
and most abstract (mathematical) description of motion but
is lacking in physiological or psychological rationale.

Evidence of a One-Third Power Law

The one-third power law for elliptical motion is satisfied by
coupled sinusoidal oscillations. The minimum-jerk simula-
tion produces equivalent results to a sinusoidal model because
the quartic and cubic velocity and acceleration functions
closely approximate sine/cosine waves (Figure 1). We have
argued that the sinusoid approach is an arbitrary model, in
the sense that it appears to approximate the general form of
human oscillatory motion but lacks clear rationale. If human
oscillations during such tasks depart from the ideal of sinus-
oids, then we might anticipate that such a "law" will waver
from its one-third value. Curved motion produced with tri-
angular velocity profiles, for instance, can be shown to exhibit
a velocity-curvature power exponent of a similar magnitude
but to deviate from a one-third law. It is apparent, therefore,
that if we are to accept the power law of Lacquaniti and
colleagues as indicative of "the control logic" (1983, p. 130)
and thereby supportive of models which predict it, any devia-
tions from the law should be examined for evidence of a
principled basis.

A second reason for the close examination of such a law is
that previous articles in this Journal have proposed it both as
a basis for the analysis of segmentation in movement (Viviani
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VELOCITY AND CURVATURE IN MOVEMENT 625

& Cenzato, ) 985) and as a feature for the appraisal of tracking
behavior (Viviani, Campadelli, & Mounoud, 1987). In the
former study, the one-third law was accepted a priori in order
to calculate the velocity gain factor K (Equation 2).

A full reading of the evidence for the one-third law (two-
thirds for Equation 1) is not totally convincing. Data pub-
lished by Viviani and McCollum (1983) on the drawing of
ellipses demonstrated a power function with a radius exponent
closer to '/i rather than 'A (p. 216), whereas the data presented
by Lacquaniti et al. (1983) displayed curvature exponent
values that included % (Equation 1) but ranged from 0.576
to 0.824 within a single subject, dependent upon speed (p.
122). In addition, when a % power function was fitted to the
curvature data from a range of ellipses, little more than half
the data points were accounted for, in that the data displayed
marked nonlinearity for curvatures with a radius above 10
cm (p. 123). Given that the radius of curvature for pure wrist
and pure elbow motion may be around 15 cm and 45 cm,
respectively (measured at a pencil point held in a tripod grip),
the aforementioned limit seems rather low. The findings of
other researchers are mixed; for example, Thomassen and
Teulings (1985) concluded that a one-third law may hold for
simple drawing movements but is not robust for more com-
plex patterns or for normal handwriting.

Given these inconsistencies, the validity of the one-third
power law seems to be in doubt. The aim of this article is to
examine deviations from the one-third power law—first, in
terms of their significance to the stability of such a description
and, second, to ascertain whether such deviations may provide
insights into the control logic beyond those already discussed
with respect to conformity to such a law. This latter aspect
will encompass an expansion of the notion of minimum-jerk
motion in human movement.

Method

General

There are few external restrictions upon arm trajectories in every-
day behaviors. Many actions are targeted and hence have specified
endpoints and distance, whereas some may have some general shape
requirements (e.g., obstacle avoidance, handwriting, and drawing).
Few have rigid time constraints, other than in terms of general tempo.
Exceptions would be hitting or catching moving objects, both of
which may be properly understood only in terms of externally driven
timing rather than endogenous organization. With these factors in
mind, the testing procedure was structured so that as few constraints
as possible were placed upon the subjects' performance. Subjects were
required to reproduce elliptical movements of different eccentricities
(to provide different curvatures), but in contrast to previous studies
(Lacquaniti et al., 1983; Viviani & Cenzato, 1985), subjects were not
presented with a raised template or predrawn ellipse, and execution
speed was not cued but left to the subjects' preference. The analyses
centered therefore on the velocity-curvature relation during trajec-
tories that were specified in general shape and size but for which local
variations in shape and speed were permitted.

Subjects

Six volunteer subjects took part in the study (3 female, 3 male; age
range: 20-40 years). Three were paid. All subjects were naive to the

nature of the experiment and what was to be measured. None of the
authors were involved as subjects.

Apparatus

Ellipses were drawn on a Micropad pressure-sensitive pad (Quest
Micropad Ltd., Dorset, U.K.). This device allows writing movements
that are performed with any type of object to be recorded at 200 Hz
with a measured "combined planar accuracy" (Teulings & Maarse,
1984) of less than 0.2 mm. The writing implement was a normal 7-
mm-diameter barrel, HB pencil with no auxiliary attachments.

Procedure

Four small circles were presented on a sheet of paper so that each
circle marked the horizontal and vertical extremes of an imaginary
ellipse, aligned with its greater semi-axis along the horizontal. The
distance between marks was chosen so that an elliptic trajectory
through all four points would yield patterns of similar perimeter (32
cm) with eccentricities of .60, .80, .90, .95. Subjects were asked to
produce a pencil trace through all four points and to keep this
movement going in a repetitive fashion. It was emphasized, however,
that this was not an aiming task, and passing through each point was
not necessary; subjects should merely try to pass close to each mark
and maintain a stable pattern. Each subject was allowed to practice
on identical sheets prior to testing. No cues were given as to the
required speed of execution except that subjects were asked to com-
plete the task at an "easy, comfortable pace." All subjects were right-
handed and performed the ellipses in a counterclockwise direction.
Although no indication was given as to the required limb movement,
the spatial extent of the ellipses did not afford the possibility of
completing them solely through wrist flexion and extension. As a
result, all subjects automatically used a combination of wrist, elbow,
and shoulder movement, with the hand held clear of the writing
surface. On completion of all four ellipses, subjects were once again
presented with each pattern and asked to complete the same task at
approximately twice their previous speed. In the following analyses,
the two speed conditions will be referred to as normal and fast speed.
In the initial testing sessions (3 subjects) each subject continued to
draw for approximately 10 s of which 4.25 s were recorded after the
performance appeared to have stabilized (about 5-6 s). In latter
sessions (3 other subjects) the recorded time was extended to 12 s.
After the end of the recording period, subjects were instructed to stop.

Data Processing

Coordinate data were smoothed by using a double pass of a
Butterworth second-order digital filter with a low-pass cutoff of 8 Hz.
Derivatives of displacement data were calculated by using successive
applications of a 5-point local polynomial approximation {Lanczos,
1957; Wann, 1987). The low-pass cutoff was chosen after inspection
of both the second and third derivatives of sample data. Instantaneous
curvature was calculated by using the first and second derivatives:

xy - yx
' (x2 + >-)'•' (4)

Speed, perimeter, and eccentricity were calculated for each cycle of
each trial, and the spatial variability was appraised. This measure
took the x,y position of the spatial extremes along each axis for each
cycle and then calculated a planar standard deviation for their dis-
persion. A coefficient of spatial accuracy was also calculated which
expressed the standard deviation along a single axis, at each extreme,
as a ratio of the total movement extent for that axis.
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Results

Shape, Speed, Perimeter, and Spatial Variability

The geometric and temporal variables calculated for each
subject's performance displayed a high degree of stability,
given the lack of constraints upon their mode of execution.
When measures were averaged across cycles, mean eccentric-
ity of the ellipses was .68, .82, .92, .95, respectively, with no
significant variation with speed or across subjects. The general
trend toward elongating less eccentric patterns is interesting
in that it may indicate a general trend by subjects to differ-
entiate between circular motion and elliptical motion, result-
ing in overshooting with the more ambiguous ellipses. The
average ellipse perimeter across subjects was stable around a
mean of 32 cm, and the coefficient of variation was less than
3% under any combination of factors (subject, speed, ellipse).
Average cyclic frequency of subjects for the normal speed
condition was 0.94 Hz (approximately 30 cm/s) with 1.51 Hz
(48 cm/s) under the faster speed condition, F(l, 5) = 15.32,
p < .025. There was a significant trend toward slightly faster
execution times with more eccentric ellipses, particularly for
the normal speed condition, with average frequency varying
from .85 Hz (.60 ellipse) to .97 Hz (.95 ellipse), F(3, 15) =
3.81, p < .05. Finally, there was no evidence of any differences
across conditions in the spatial variability estimates, which
appraised the tightness of the grouping at each of the vertical
and horizontal extremes, across cycles. The planar spatial
standard deviation (see Method) was generally of the order of
0.5 cm for the longer horizontal axis and 0.3 cm for the
vertical axis.

Appraisal of a Power Law: Principles

In order to appraise the adequacy of a one-third power law,
two levels of analysis are undertaken. The initial level adopts
a straightforward approach of analyzing each movement
cycle. The results of this analysis, however, are then used to
highlight the potential for misinterpretation of results when
analyzing data in this manner.

The appraisal of a power law may be attempted by using a
least-squares regression procedure based upon Equation 3. A
linear regression of the natural logarithms of I7 and R allows
the estimation of the least squares exponent (/9) for R. The
standard error of the estimate of 0 (SE,,) may then be used to
appraise the significance of any linear divergence from a one-
third law, in the form of an F statistic:

Table 1
Averaged Parameters for Velocity-Curvature Regression

'J
SE, (5)

The data used for the regression should conform to the
limits of Equation 2; hence, low curvature sections should be
excluded. In this case, all radius values greater than 15 cm
were rejected.

Two potential problems may be perceived with this ap-
proach.1 First, successive values of J? cannot be independent

Speed and ellipse

Normal
.60
.80
.90
.95

Fast
.60
.80
.90
.95

Exponent 0

.256

.296

.336

.342

.324

.336

.331

.343

GainJT

19.01
18.36
17.27
15.90

26.70
27.88
26.34
23.92

Correlation"

.800

.885

.970

.975

.930

.975

.980

.990

" Correlations averaged using z transforms.

because of the continuity requirements of an ellipse. For this
reason, the regression procedure randomly selected only 30%
of the coordinate pairs for analysis. The rejection of a large
portion of the data is unusual and may be viewed with
suspicion by the reader. To allay any such reservations, the
analyses were also checked on the full data set. All of the
effects to be reported were also significant, at a similar level,
under a full analysis, and all means were within a few percent
of the reported value. The only noteworthy trend of the
random rejection procedure was to reduce the correlation
between ff and ellipse perimeter from —.2147 (full analysis)
to -.0398 (random).

The second issue that may have a bearing is that the data
of Viviani and McCollum (1983) on circular drawing suggest
there may be an effect of perimeter variations on the calcu-
lated exponent /9. If perimeter varies grossly across cycles and
if all cycles are included in the analysis, this may introduce
error. In this experiment, however, as already reported, perim-
eter exhibited very minor variations. In addition, the protocol
adopted was to regress each cycle of the ellipse (or segment of
a cycle in later analyses) independently and to appraise the
power law on each. In each regression, perimeter was therefore
a constant and could not affect the validity of the estimates.
Support for this last contention is borne out by the negligible
correlation between p and the perimeter reported in the
previous paragraph.

Appraisal of a Power Law: Initial Findings

All the trials analyzed could be well described by some
form of power law between velocity and radius of curvature.
The exponent which yielded the best fit, however, was not
constant for all patterns and did not always agree with a Vi
approximation. There was a significant linear effect of eccen-
tricity, Fhn(l, 15) = 29.38, p < .001, and an interaction
between eccentricity and speed of execution, F(l, 15) = 5.65,
p < .01. Table I displays the relevant means along with other
regression statistics. It can be observed that in the normal
speed condition, the exponents gradually attain a V} level with
increasing eccentricity, whereas under the faster speed condi-
tion all exponents are of a similar order. The velocity gain

1 We are particularly grateful to Paolo Viviani for his suggestions
with respect to the problems underlying such an analysis.
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factor K (Equation 2) exhibited a significant variation with
speed, F(\, 5) = 22.61, p < .01, in line with the findings of
previous studies, but also showed a strong linear effect of
eccentricity F,M, 15)= 19.52, p< .001. Finally, it should be
noted that the correlation for the regression (averaged and
analyzed using z transforms) showed similar effects for con-
ditions of speed, F( 1, 5) = 45.31, p < .002, and eccentricity,
F,M, 15) = 371.5, p<.001.

Thus it appears that under the condition where subjects
chose their own rate, there were marked deviations from a
one-third power law and that these were associated with the
eccentricity of the ellipse. It addition, it is prudent to note
that the direction of such deviations is opposite to that pre-
dicted if there had been an influence of perimeter variations
(Viviani & McCollum, 1983).

Interesting though these effects may be in terms of modeling
movement, the acid test of whether the V; value is still stable
enough to constitute a "law" is outlined in Equation 5. Did

Figure 2. Simulated elliptical motion to demonstrate the effect of a
10% skew in sinusoidal velocity profiles. Upper panel: Velocity
profiles are skewed so that the peak velocity occurs at .45 of the half
cycle (zero crossing to zero crossing). Inset: The spatial pattern for
the ellipse maintains a .80 eccentricity despite slight spatial distor-
tions. Lower panel: The acceleration profiles for the x and y axes (x
ACC, Y ACC) display a "fine-structure" around the peaks due to the
nonsymmetrical zero-crossings of the velocity profiles.

the least squares exponent differ significantly from Vil An F
statistic was calculated for each regression of each cycle, and
the number that reached significance (p < .05) was then
totaled and expressed as a percentage of the total number of
cycles. This approach avoids blurring any of the assumptions
underlying such a test. The results are clear: Of all the expo-
nents calculated (approximately 80 regressions per subject),
only 7.6% were significantly different from !6 for the .60
ellipse, and none were significantly different for the other
ellipses.

The simple conclusions from the preceding analyses would
be that variations may occur in the power exponent for the
velocity curvature relation but that a Vi approximation is
stable enough to be treated as a definitive value; however, we
ask the reader to reserve judgment on this issue until a brief
analysis is detailed which explores the possible cause of devia-
tions from '/a. This will suggest that the foregoing level of
analysis is not appropriate to resolve this issue, and therefore
the use of the quoted statistics in support of the one-third law
would be unwise.

Simulating Deviations From a Power Law

Given the findings of the previous section, it is interesting
to consider what conditions are sufficient to model the devia-
tions observed from a one-third law. In the introduction it
was demonstrated that the combination of two sinusoidal or
sine-like oscillations would produce a one-third law. The
altering of phase between the two does not affect this predic-
tion, other than to extend the range of curvature as phase
approaches 0° or 180°. If we make the temporary assumption
that a sine wave adequately approximates the velocity func-
tions of human oscillatory movement (e.g., Soechting, et al.,
1986; Soechting & Terzuolo, 1986), modulating amplitude,
period, or phase of oscillation cannot explain such effects,
particularly if we wish to maintain a constant spatial trajec-
tory. Mild skewness,2 however, can produce identical effects
with very little distortion of the spatial trajectory.

Figures 2 and 3 illustrate the results of coupling two such
sinusoids, both skewed by 10%, so the absolute peak values
of velocity occur at .45 of the half cycle (time between two
zero crossings of a velocity profile), rather than at .5. Future
references to skew will use this value of the relative location
of the peak, because it provides information about both

1 Skewness in this context refers to asymmetry in the acceleration
function either side of the peak velocity (acceleration zero-crossing)
for a unimodal movement. The sinusoidal velocity functions used in
this simulation were produced by the same approach that Maarse and
Thomassen (in press) used:

v(0 = vm sin(w), u = -
Z t\

v(t) = vm COS(M), u =
2 fz - /,

t, < t < k.

where vm — peak velocity, and fo, t\, h are the times of the onset,
peak, and cessation of motion, respectively.
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Figure 3. Simulated elliptical motion: The effects of skewness upon
the velocity-curvature relation. Panel A: Velocity (TAN. VEL.) and
curvature (CURV.) for a skew of .45 showing a lack of symmetry
around points of high curvature. Panel B: log-log regression for a .45
velocity skew displaying a scattering of data points (compared with
the lower panel of Figure I ) and a decrease from '/i for the least
squares exponent. Panel C: Reanalysis of the data in Panel B to
demonstrate that the asymmetry produces two power relations, which
are different for motion towards a point of high curvature (Low-
High Cur) and motion away from a point of high curvature (High-
Low Cur). (These are averaged by the approach taken in Panel B.)
Panel D: An increase in the skew to .40 results in wider dispersion of
the data and a further decrease in the curvature exponent if a total
cycle regression is used. (Ecc = ellipse eccentricity; Vel.skew. =
proportional skewness of velocity profile.)

direction and extent of skew, and it is simple to estimate or
compare across studies. The ellipse to be simulated was iden-
tical to that used for Figure 1 and performed by the subjects.
It appears (inset Figure 2) that ellipse distortion is well within
the bounds of normal human motor error.

The acceleration profiles show interesting discontinuities at
their peaks, which at first glance seem to be incompatible with
empirical data. Such "fine structure" in acceleration profiles
of handwriting data, however, has already been commented
on by other researchers (Dooijes, 1984; Hollerbach, 1980,
1981; MacDonald, 1966). In particular, Dooijes (1984) high-
lighted the unusual nature of such peaks in the second portion
of the half-period, because they are precisely opposite to the
effect that coulomb friction (pen-paper friction) would have
on a symmetrical control function (see also Shinners, 1978).
Hollerbach (1980) also doubted that such peaks were due
purely to the influence of friction and suggested that at least
some of the effects might be due to "segmentation of the
acceleration profiles" (p. 55). This suggestion is essentially
equivalent to the skewing procedure used in this simulation.
In this respect, the simulation does not conflict with previous
empirical findings, but provides an alternative perspective for
their interpretation. Interestingly, it has also been demon-
strated that the most effective models for the reconstruction
of the spatial characteristics of handwriting are those that
include similar skew effects in velocity functions (Maarse &
Thomassen, in press; Maarse, van Galen, & Thomassen, in
press).

The relation between curvature and tangential velocity for
the skewed sinusoids is shown in Figure 3. At a skew of .45
the least-squares exponent for R begins to drop, (0.326). This
is accompanied by a scattering of the data pairs although the
correlation is still high (.99). The middle regression plot,
however, demonstrates that this scatter is not random but is
due to the fact that going out to any of the vertical or
horizontal extremes of the ellipse is no longer the same as
coming back. Regression lines calculated separately for the
high to low and low to high curvature portion return to
perfect correlation and demonstrate a pronounced departure
from '/3, toward both lesser and greater values. This effect is
the result of correlating quarters of a sinusoidal cycle that,
because of the skewing procedure, have slightly different
periods. In a discrete simulation such as this, nonlinearity is
not evident. The final plot of Figure 3 shows that as skew
reaches .4, the exponent calculated from the total cycle con-
tinues to decrease. The scatter effect becomes very pro--
nounced because of nonlinearity in the data (increasing dif-
ference in the V» cycle period). This suggests that if there is
evidence of strong skewness, a power law for either segments
or cycles, in truth, can no longer be assessed by linear (log-
log) regression.

Appraisal of a Power Law: Principles Redefined

What the foregoing simulation has shown is that if there
are skew effects present in the data, then (a) the least squares
exponents calculated on a total cycle regression will deviate
in the direction observed in the empirical data; (b) this cal-

laura




VELOCITY AND CURVATURE IN MOVEMENT 629

culated exponent will not be a true estimate but a trade-off
between two separate segment power functions which deviate
more strongly from 1/3; (c) the correlation between velocity
and curvature will drop as observed empirically because the
trade-off means that the total-cycle data are more variable.
The consequence of these three factors is that if such effects
are present, the initial analysis used to test the power law is
not appropriate. The F statistic (Equation 5) not only com-
pares a diluted deviation from the law, but also the standard
error of its estimation is inflated by the very conditions that
blur its difference, thereby negating any attempt to appraise
the significance of departures from a 1/3 law. It follows,
therefore, that a better approach is to regress quadrants of the
ellipse between points of high and low curvature and to
calculate an F statistic for each of these (Equation 5). It may
also be prudent to point out that if no skewing is present, this
approach should not affect the general finding of the previous
(total cycle) analysis.

Appraisal of a Power Law: A Reanalysis

Direct evidence of skew effects is provided in a later section.
Figure 4, however, presents some typical data for a single
subject performing two extreme ellipses. There is some indi-
cation in such an example that the velocity curve for the .60
ellipse is less regular and symmetrical, while the log-log plot
shows splaying around the average regression line, commen-
surate with the previous simulation. It is interesting to note
that although values of log(-R) above 2.7 were not used for
the regression calculations (see section on Appraisal of a Power
Law: Principles), the data plotted in Figure 4 do not show the
marked nonlinearity found by Lacquaniti et al. (1983).

Each cycle of each ellipse was searched to determine the
segmentation points at each of the horizontal and vertical
spatial extremes; the regression procedure was then applied
to each segment (see Figure 4 for segment labels). Once again
the departure of the least squares exponent was appraised for
each regression by use of its own standard error and degrees
of freedom (Equation 5). The percentage of the total compar-
isons that were significant at the .05 level was then calculated.
The pattern of significant departures was markedly different
from the total cycle analysis, with 59.8%, 49.2%, 32.1%, and
19.1% of segments achieving significance for the .60, .80, .90,
and .95 ellipses, respectively. This linear trend with eccentric-
ity was significant, /",,„( 1, 15) = 75.28, p < .001, and a mild
effect of speed was evident, F(\, 5) = 10.19, p < .05. Figure
5 displays the least squares exponents averaged over subjects
for each segment of each ellipse under both conditions. It
may be observed that in line with the simulation, the expo-
nents are both greater and less than one-third but tend to
approach this value with increasing eccentricity and increasing
speed.

On the strength of this analysis, the conclusions of the
previous section may be reversed. Given the high proportion
of significant departures from a one-third law under varying
trajectory conditions, it must be concluded on the basis of
these data that the law does not adequately describe any

general principle of trajectory execution and is a suspect basis
for any extended analysis technique.

The comparison of the present results with those of other
studies using similar tasks is difficult. Both the experimental
procedures and analysis approach may influence results. The
general pattern of findings, however, does concur with some
of the results presented (but not commented on) by Lacquaniti
et al. (1983; Figure 4), where the power law deviated in a
similar direction for slower ellipses. Given the marked differ-
ent approach to analysis in the two studies, however, such an
observation should not be given too much weight.

Some of the previous studies (Lacquaniti et al., 1983;
Viviani & Cenzato, 1985; Viviani & McCollum, 1983) have
used very small subject numbers (2-4) that typically include
the investigators. It is not inconceivable that differing results
not only may be due to imposed tempo effects and analysis
routines but also may indicate a change of strategy with skill
level.3 Some support for this suggestion may be gleaned from
the aforementioned studies. Viviani and McCollum (1983;
Figure 1) depict simple circular motion that, in line with our
data, displayed additional minor variations in local curvature,
which are also typical of the fine-structure of our simulations
(acceleration is used to calculate curvature and hence trans-
mits transient variations). Viviani and Cenzato (1985; Figure
1), however, using the same data processing routines as the
previous study, displayed elliptical movement that closely
approximated harmonic motion, which surely suggests per-
formance by a highly skilled subject. It is possible that increas-
ing experience on such a relatively unusual task may lead the
subject to adopt different strategies and criteria for control.

Discussion

The analyses presented in the previous sections have been
aimed at establishing that human motion may transgress the
one-third power law, which states that tangential velocity is
proportional to radius of curvature raised to the power of
1/3. In this respect, the approach has been primarily destruc-
tive and has served to highlight that such a "law" may be a
limit case approximation or may result from the adoption of
inappropriate analysis techniques. It now seems appropriate
to be more constructive and ask whether the observed devia-
tions in the data serve to expand our understanding of control.
To provide some perspective on this question, we have chosen
to explore a model of control based upon the optimization of
smoothness in movement.

3 It is interesting to note, purely on the basis of subjective obser-
vation, that most of the subjects within this study did not find the
task of drawing ellipses a simple motor act. Establishing the initial
pattern of motion took some time (data were not recorded for this
period), and minor deviations from an ellipse occurred frequently,
requiring small trajectory corrections. All subjects were naive to the
task, except for a single practice trial and a number of cycles that
were performed prior to the start of data recording.
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Figure 4. Empirical data from the performance of a .60 and .95 ellipse. Upper panel: Spatial patterns
from 1 subject performing a .60 and .95 eccentricity ellipse, plotted on the same scale, (numbers inset
on the .60 ellipse indicate the numerical labels used for each segment in the subsequent analysis).
Middle panel: Plots of tangential velocity (dashed line) and curvature (solid line) for each respective
ellipse, displayed on the same scale. (The average velocity is the same for both ellipses, but the range is
greater for the more eccentric pattern, commensurate with the effects of curvature.) Lower panel: The
natural log of tangential velocity plotted against the natural log of radius of curvature for both ellipses.
(The ordinatc is the same scale for both plots, but the abscissa is different. The solid lines indicate the
average regression lines for each plot, the parameters of which are displayed in the inset equations.)

Extending the Notion of Minimum Jerk

The minimum-jerk model of Nelson (1983; adapted from
the principles of Flash & Hogan, 1985) was presented in the
introduction, and its prediction of the one-third power law
was demonstrated. The notion of minimizing jerk, and hence
optimizing smoothness, is appealing as a control model, and

good agreement with empirical data has been demonstrated
by Flash and Hogan for point-to-point movements. The un-
answered questions pertaining to the role of such a model in
the refinement and modulation of movement seem to be, Is
there any equivalence between an individual's perception of
"jerkiness" and mean-squared jerk as used by Flash and
Hogan (1985)? If a child refined a spatial trajectory until it
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NORMAL SPEED ELLIPSE FAST SPEED ELLIPSE

Figure 5. Least squares exponents for the velocity radius of curva-
ture regression on empirical data, using a segmentation approach (see
text). (Dotted line indicates a Vj law.)

"felt smooth," would that be equivalent to minimizing such
a mathematical criterion? A simple observation pertinent to
such questions is that we are not Newtonian point-masses or
inextensible linkages but visco-elastic bodies. The criterion
chosen for minimization by Flash and Hogan (1985) was
based purely upon the trajectory jerk, that is the jerk "expe-
rienced" by a dense inextensible point-mass. Subjective per-
ceptions of motion, however, seem to be conditioned by the
physical state of human tissue. If someone is rapidly acceler-
ated by a vehicle, elevator, or roller coaster, many of the
sensations of acceleration are due to the distortion of their
visco-elastic mass, and jerk is perceived similarly. Figure 6
presents a schematic of a visco-elastic mechanical jelly being
driven through a trajectory. The black sphere represents a
dense center of mass being accelerated or decelerated. If the
system is able to monitor the strain in the surrounding tissue
(springs), then the system is essentially a three-dimensional
viscous accelerometer, blind to position, ambiguous about
velocity, but aware of the extent, direction, and changes in
acceleration.

We now propose to adopt these ideas to modify our concept
of smoothness in movement. This model was originally de-
veloped with a different motivation, and a full discussion of
the mathematical and psychological principles is presented
elsewhere (Nimmo-Smith, 1988; Wann & Nimmo-Smith,
1988). Its adaptation to the current problem, however, seems
both relevant and fruitful, and the principles of the approach
are developed below, with a mathematical "skeleton" pre-
sented in Appendix A.

For a movement in one dimension, let the position of the
center of mass be denoted by x(t) and the distortion of the
body or instantaneous stretch be denoted by d(t). If it is
assumed that the dynamics of the tissue can be adequately
approximated by a linear second-order system, for a given

amplitude and execution time, the redefined criterion for
minimization becomes

(6)£ (x + dfdt.

This is equivalent to minimizing both the external and inter-
nal jerk on the body. The mathematical solution to the
optimization problem (Appendix A) is similar to that arrived
at by Rash and Hogan (1985), in that it is based upon a
quintic polynomial in time. However, it also includes expo-
nential terms that are dependent upon the stiffness and vis-
cosity of the system relative to its inertia. The predictions of
such a model, in simple terms, are that if the system (limb
tissue) is stiffened, then the optimal trajectory for point-to-
point movement converges on the Flash and Hogan (1985)
solution. If the limb is relaxed, however, the optimal trajectory
has a velocity profile skewed toward the onset of movement,
similar to the forms observed in many upper-limb movements
(e.g., Atkeson & Hollerbach, 1985; Wing & Miller, 1984).
There are limits to the applicability of the model in terms of
human behavior; although there is little problem in specifying
any trajectory for a system with high relative stiffness, at-
tempts to drive a flaccid or extremely viscous system at high
frequency produce optimal trajectories with pronounced

STIFFNESS K
VISCOSITY a.

Stationary

Accelerate

Decelerate

Figure 6. Schematic of a visco-elastic model for minimizing jerk.
(The mass is driven through a trajectory based upon a dense center
[black mass]. As the body accelerates or decelerates, small distortions
in the surrounding tissue [springs] provide cues as to the direction,
extent, and any changes in acceleration. The criterion to minimize is
not merely the trajectory jerk but the disturbance of the body.)
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overshoots or reversals. When adapted to the less constrained
problem of repetitive motion with nonzero endpoint acceler-
ations, such as the motions analyzed in this article, equivalent
behavior can be simulated. A stiff system converges on the
Nelson (1983) solution (Figure 1), whereas less stiff systems
produce progressively skewed velocity profiles.

Jerk Costs for a Visco-Elastic Body

In extending this model to human limb movement, it must
be strongly emphasized that there is no suggestion that we are
modeling the actual physical characteristics of a limb. The
model is truly a psychological rather than biomechanical one.
Its principles are that what people perceive in terms of kine-
matic smoothness is conditioned by the state of their visco-
elastic mass. The perceptual function is considered as a global
kinesthetic one (as subjectively perceived), without postulat-
ing any single or combined afferent groups. It is apparent,
however, that the human limb is richly endowed with cuta-
neous and muscular afferents that are able to sense stretch
and change in stretch, as required by the system displayed in
Figure 6.

Given the behavior of such a system, it is obvious that the
specification of stiffness and viscosity should have some ra-
tional basis. It should be emphasized that the stiffness and
viscosity of the limb tissue (<c, n) are not synonymous with
the vector impedance of the limb with respect to directional
motion (Vincken & Denier van der Gon, 1985). We suggest,
however, that the two are related in that a considerable
contribution to the tissue stiffness must be from muscular
contraction; hence, it would be difficult to increase limb
impedance without increasing tissue stiffness. The converse
does not necessarily hold because it may be possible to stiffen
limb tissue through the action of orthogonal or minor muscle
groups without dramatically altering limb impedance with
respect to some vector motion. For the sake of this analysis,
we will assume that the damping coefficient (a in Appendix
A) is relatively constant at 0.5, chosen on the general obser-
vation that human tissue is certainly damped but that it is
still possible to set up vibrations within the tissue. It may be
observed from the simulation results depicted in Figure 7 that
jerk cost (mean squared jerk) for a movement of given am-
plitude and duration decays as a result of increasing stiffness
(undamped natural frequency). The form of this function
scales with distance and time. The curve displayed is actually
the total jerk cost for a .80 ellipse of the size used in previous
simulations and performed by subjects. Because of the simple
geometry of ellipses, however, the curve for other ellipses of
the same perimeter would be identical. Given solely this
criterion, it appears that the stiffer the limb tissue, the better,
in that optimal (minimal-jerk) performance can be achieved
only with a very stiff system that approximates a Newtonian
point-mass. It is suggested, however, that purely on energetic
criteria such a control strategy is not desirable. An increase in
tissue stiffness can be achieved only at the expense of addi-
tional energy costs.4 An alternative seems to be the selection
of a stiffness level that substantially reduces jerk (i.e., to where
the jerk cost begins to level out; Figure 7) without invoking
excessive levels of stiffness. This conclusion may be reached
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Figure 7. Simulated elliptical motion: Redefined jerk cost of per-
forming a .80 ellipse as stiffness increases, plotted against undamped
natural frequency. (Mean-square jerk for the visco-elastic model still
retains normal spatial/temporal units, but these are arbitrary because
they combine internal and external effects.)

without subscribing to any specific energy or effort criteria.
Provided that one accepts that extreme tissue stiffness is
undesirable, the exponentially decaying jerk cost illustrated
in Figure 7 leads toward such a logical alternative.

Moving a Visco-Elastic Body Around Ellipses

The behavior of the visco-elastic minimum-jerk model
under different stiffness conditions is shown in Figures 8 and
9. Figure 8 displays the simulated performance of a .80 ellipse
at the same size and speed as used for previous analyses, with
a tissue stiffness (undamped natural frequency, co0 in Appen-
dix) of 12 rad/s. Spatial distortion of the ellipse is of the same
order as Figure 4 and hence within the range exhibited by
human performance. Velocity and acceleration profiles are
qualitatively similar to those of the sinusoidal simulations, in
terms of their respective skewness and fine-structure. These
features arise from the inherent asymmetry of the cyclic
kinematics for such a model. Such features may be lost during
the smoothing of empirical displacement data, and it should
be acknowledged that the behavior of this idealized trajectory
model would be blurred if motion was generated through a
second-order (muscular) system. As was discussed in the
previous sinusoidal simulation, however, this fine structure

* The estimation of such costs in terms of metabolic requirements
is notoriously difficult (e.g., Hatze & Buys, 1977). Nelson (1983) used
a simple approach to the estimation of minimum-energy movement
based upon mean squared acceleration (i.e., force per unit mass). This
is clearly not appropriate because the same "energy" cost is estimated
when the subject stiffens the limb and moves a set distance in a given
time as when he or she relaxes and performs the same task (e.g., see
Vincken & Denier van dcr Gon, 1985).
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evident within the acceleration profiles is not at variance with
empirical data and has been commented on by previous
researchers (Dooijes, 1984; Hollerbach, 1980, 1981; Mac-
Donald, 1966). It is also evident in the data of additional
studies examining differing effector systems, (Edelman &
Flash, 1987, Figures 3, 5; Kay, Munhall, Bateson, & Kelso,
1985, Figure 2), which reinforces the suggestion by Hollerbach
(1980) that these are not friction artifacts but may reflect
aspects of control.

Figure 9 illustrates the velocity-curvature relation for a .80
and .95 ellipse produced by the model using the same natural
frequency (12 rad/s). It can be observed that the least-squares
curvature exponent for the .80 ellipse deviates in a similar
way from the empirical data (Figure 9C). As the relative
contribution of motion along the minor axis decreases in the

.95 ellipse, however, the exponent moves back toward 1/3,
(Figure 9D). There is no need to change the natural frequency
of the system to predict the effects observed in the empirical
data. Figure 9E illustrates that if the system is stiffened (14
rad/s), then the least squares exponent for radius of curvature
moves toward 1/3, but this is still the result of a trade-off
between two markedly different values for each quadrant
(Figure 9F; see earlier section on Simulating Deviations From
a Power Law for a fuller discussion of this effect). This final
demonstration is particularly germane to the observed trend
in the empirical data, where an increase in speed of execution
reduced deviations from a 1/3 exponent. If we accept that
increased movement speed is accompanied by a tuning up of
limb impedance (Vincken & Denier van der Gon, 1985) and
a concomitant rise in tissue stiffness, then this model predicts
convergence of the curvature exponents upon a value of 1/3.

0.4 0.6
TIPE 5!C

Figure S. Simulated elliptical motion: Behavior of the visco-elastic
model performing a .80 ellipse at 1 Hz. Upper panel: Velocity profiles
showing slight skewness. Inset: Spatial pattern retains the general
form of a .80 ellipse. Lower panel: Acceleration profiles for both axes
(x ACC, Y *cc) exhibiting the "fine structure" typical of earlier
simulations. (Compare with Figure 2.)

Appraising the Merit of a Visco-Elastic Model for Jerk
Minimization

The behavior of the model presented in the previous sec-
tions is entirely commensurate with the empirical data. The
least squares exponent deviates from 1/3 in a similar way for
low-eccentricity ellipses, and there is evidence that this is the
result of a trade-off between different quadrants of the ellip-
tical trajectory. In order to produce these effects, it was
proposed that the trajectory be optimized to minimize jerk at
a given level of tissue stiffness but that the level of stiffness
chosen be one that will substantially reduce potential jerk cost
without unduly tapping the resources of the muscular system
{i.e., not invoking maximum tissue stiffness). Given the lati-
tude of such a model, it is possible to chose conditions that
produce results in quantitative agreement with the empirical
data, but such an approach may be considered little better
than curve fitting the velocity and curvature records. There is
obviously some question, therefore, as to whether the model,
in common with many others previously, proposed, merely
mimics the empirical results rather than explains them. There
is a need to examine independent predictions of the model
with respect to the data. The model presented predicts that
the observed effects are due to asymmetries in the velocity
profiles, so that peak velocity is reached before the midpoint
in movement time. This feature of the model can not be
changed by any lawful manipulation of the parameters and
provides a potential means of partial validation: It was dem-
onstrated in earlier sinusoidal simulations (Figures 2 & 3) that
skewness was a sufficient, though not necessarily the only,
condition to produce deviations of the type observed in the
data. The direction of the skew necessary to produce devia-
tions, however, is not predetermined. Therefore, an initial
appraisal of the adequacy of the model can be made as to
whether skew effects are in fact present in the data and
whether the direction of skew is in line with the model
predictions.

A post hoc analysis of the empirical data was performed
which searched the x,y velocity profiles to ascertain the tem-
poral location of the peak for each trajectory'. It should be
emphasized that the model was developed independently and
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Figure 9. Simulated elliptical motion: Velocity curvature relation for the visco elastic model. Panels
A and B: Velocity (TAN. VEL.) and curvature (CURV.) records for simulations of a .80 and .95 ellipse
respectively, with a stiffness parameter (undamped natural frequency) of 12 rad/s. Panels C and D:
Velocity upon radius of curvature regressions for a .80 and .95 ellipse respectively. (Note the variation
in least-squares curvature exponent despite the same natural frequency for both simulations.) Panels E
and F: A .80 ellipse simulated with 14 rad/s undamped natural frequency for the model. (The regression
approaches a '/j power law in E. If the same data are reanalyzed in terms of segments, however [see
section on Appraisal of a Power Law: Principles Redefinet!\, the effects demonstrated in Panel C of
Figure 3 are still evident in Panel F. Ecc = ellipse eccentricity; Nat.Freq. = undamped natural frequency
for the model.)
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without knowledge of any skewness within the present data.
Thus the analysis of skewness was truly post hoc with respect
to such predictions. The model predicts that skewing should
be evident in the velocity profiles so that the velocity peak
should occur at less than .5 of the movement duration. This
effect should be primarily evident only for the slower (normal
speed) trials, whereas faster trials should be more symmetrical.
The relative peak locations for fast and normal speed trials
over the four ellipse conditions are shown in Table 2. The
results are generally in line with the model with a significant
effect speed of execution, ,F(1, 5) = 7.98, p < .05. There is,
however, additional evidence of a mild trend toward less
skewness in more eccentric ellipses, F(3, 15) = 3.17, p = .055.
This does not go against the model but merely suggests that
there is a mild trend toward the use of greater stiffness for
more eccentric ellipses, a suggestion in line with the earlier
observation of a slight increase in execution speed with in-
creasing eccentricity. One anomaly, however, is that the ve-
locity peak for the ellipses at the faster speed generally oc-
curred after the temporal midpoint (Table 2). This cannot be
accounted for by the present model, which becomes perfectly
symmetrical with increasing stiffness. The resulting conclu-
sions must be that the data seem to provide qualitative support
for the present model under relaxed conditions where subjects
chose their own movement tempo. Where subjects are re-
quired to move somewhat faster, however, factors other than
those accounted for in the present model seem to influence
the trajectory dynamics.

Summary and Conclusion

The stated aim of this investigation was twofold. First, the
stability of the one-third law was examined. Second, the
relevance of any deviations in the velocity-curvature relation
to our understanding of control was assessed. The results
arising from the former analyses indicated that the one-third
law may be a good approximation for movement performed
at faster tempos. If constraints are relaxed and subjects per-
form movements at their chosen rate, however, there are
significant deviations from such a law. Because the latter
mode of performance is more akin to everyday movement, it
must be concluded that the one-third law is an approximation
possibly limited to imposed tempo movement (as used in
many of the previous studies). A second important finding
was that the approach used to analyze cyclical movements
may bias results toward a one-third value, whereas the appro-

Table 2
Averaged Skewness of Velocity Profiles (Time of Peak
Velocity/Duration of Movement)

Ellipse

Speed .60 .80 .90 .95

Normal
Fast

.475

.508
.472
.507

.490

.520
.495
.521

priale velocity-curvature power law along specific segments
may be markedly different. This study compared approaches
of taking individual cycles for the regression procedure as
opposed to segmenting each cycle. Because previous studies
have typically averaged data over large portions of a cycle and
over cycles (Lacquaniti et al., 1983; Viviani & McCollum,
1983), their one-third finding is not surprising.

The variation of tangential velocity with curvature does
seem to be a general principle in movement organization and
has been observed with children as young as 5 months (Fetters
& Todd, 1987). Thus it can provide a powerful focus for
examining possible means of human motor control. We sug-
gest that changes in the value of a velocity-curvature power
law with experience or during development may be a partic-
ularly insightful area for future research, provided that appro-
priate analysis procedures are adopted. The one-third power
law, however, seems to be a limit case approximation, and as
such its use in the construction of analysis approaches or for
the interpretation of data seems unwise. From the approach
of modeling movement control, however, the general finding
that a velocity-curvature power relation is normally present
and in the range of 0.25-0.4 suggests that 1/3 is a good first
approximation of the general trend.

A particularly interesting feature of the one-third law as it
stood was the identity it held with coupled sinusoids. We have
argued, however, that sinusoidal motion does not on its own
constitute a biological control theory. A number of other
control models produce movements that approximate sinus-
oidal motion, and a one-third law lent support to such control
hypotheses. From suitable candidates such as weak nonlinear
limit-cycle oscillators (Kay et al., 1987), minimum-energy
(Nelson, 1983), best stiffness (Hasan, 1986), and minimum-
jerk motion (Flash & Hogan, 1985; Nelson, 1983), we chose
the latter for investigation. We found that the deviations from
one third, observed within the empirical data, were commen-
surate with a model of minimum-jerk that took some account
of the visco-elastic nature of human tissue and its possible
consequences for the perception of jerk. It seems appropriate
that such a model provides a good account of human behavior
where subjects were performing under relaxed conditions. In
such circumstances, it might be expected that both smooth-
ness and effort of movement might be critical factors, whereas
when additional temporal or spatial constraints are imposed,
performance may be dictated more by such concerns. Hence,
it may be concluded that the present model is a useful
extension of the original notion of minimum jerk, in that it
provides some potential for experiential learning of trajectory
control. The model presented in this article, however, is still
at a nascent stage, and thus we reserve judgement as to its
validity across different tasks and conditions, pending further
experimentation. On the basis of the data analyzed in this
study, it appears to be limited to relatively unconstrained
movement. The precise limits of applicability require further
investigation, as does the validity of the model across condi-
tions where stiffness is consciously modulated. On the strength
of the present investigation, however, the behavior of a visco-
elastic model for the minimization of jerk seems to provide
an interesting area for further investigation.
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A Visco-Elastic Model for Jerk Minimization

The visco-elastic model of trajectory formation is based on the
proposition that when the system moves along a trajectory x(t), it
induces an internally represented deformation d(t). Defining K and /i
as the ratios of stiffness/inertia and viscosity/inertia, respectively,
then

(Al)

where uo is the undamped natural frequency, and a the damping
ratio for the system.

The internal and external consequences of motion are related by a
second-order differential equation of the form

x + d = —fid — K.d. (Al)

Let p(0 = x(f) + d(t) represent the trajectory followed by the
center of mass, which may be thought of as the "perceptual center"
of the system. We propose the "minimum-perceptual jerk criterion"
for trajectory formation. Choose x(l) to minimize

(i>fdt. ;(A2)

subject to boundary conditions on x, x, d, d,alt = 0, T. For repetitive
motion these are chosen to be

x(0)

d(0t = - d(T)

40) = d(T) = 0.

Standard constrained variational methods lead to solutions of the
form

x(t) = gs(t) + ae" + be~", (A3)

where g, (0 is a quintic polynomial, whose six coefficients, together
with a and b, must be able to satisfy the end-point conditions. The
exponential term is a ratio of stiffness to viscosity X = -; substituting

from Equation Al gives X = —.
La
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