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Abstract
Many researchers who have studied movements along curved paths, under a variety of conditions, by different organisms, 
mostly human but a couple with non-human organisms, have found a consistent form of relation between the tangential 
(along-track) instantaneous velocity V and the local radius of curvature R. The consistent relation is that V ≈ cRk, where k 
is a constant less than unity, often near 0.33 but sometimes far from 0.33, and c is a proportionality constant appropriate to 
the organism and the situation (see Zago, Matic, Flash, et al. (2017) for many examples in which the power law holds with 
widely varying values of the power, as well as cases of simple systems for which everything can be calculated exactly and 
in which the power law fails badly). Marken and Shaffer (Exp Brain Res 235:1835–1842; 2017), following a challenge by 
Gomez-Marin to see whether it is possible to use Perceptual Control Theory (Powers 1973/2005) to explain the power law 
results (Alex Gomez-Marin posting to CSGnet@lists.illinois.edu 2016.05.03), claim to have found a mathematical argument 
that proves the true exponent of the power relating velocity and radius of curvature always to be 1/3. They say that deviations 
from this value occur because researchers have omitted a critical correction “cross-product” factor that the authors label 
“D”. This note questions the logic of the analysis offered by Marken and Shaffer, and argues that even had the analysis been 
correct, it would not affect future research into the reasons why and when the power law is observed and the circumstances 
that determine the value of the power found when it is observed.

Mathematical background

On the face of it, it would be remarkable, even impossible, 
to derive a velocity directly from a length measure (radius 
of curvature). Have Marken and Shaffer managed to do the 
impossible, or have they erred in their analysis? I argue that 
their derivation of velocities directly from shapes is faulty, 
an error produced by treating one instance of a large set as 
being the only possible member of the set, as in “I heard my 
friend got a dog she called “Casper”. I saw a dog on the 
street today. It must have been called Casper.” In the pre-
sent case, the instance is a measured velocity profile over a 
curved path, while the set consists of all the possible velocity 
profiles that could occur over that path.

Here is the mathematical background for the mistake. A 
curve on a plane surface can be described by selecting an 
arbitrary point on the curve and reporting the x and y values 

of other points as functions of distance “s” along the curve 
from that arbitrary point. The values of x and y are independ-
ent functions of distance along the curve, linked only by the 
actual shape of the curve. These two functions, x = x(s) and 
y = y(s), produce what is called a “parametric representa-
tion” of the curve with s as the parameter. The local (signed) 
radius of curvature at any point on the curve depends on the 
first and second derivatives of x and y with respect to s at 
that point according to a well-known expression:

The parameter need not be the along-curve distance “s” 
itself. Any arbitrary continuous variable, say “z”, may be 
used to specify the distance along the curve, if its value can 
always be converted unambiguously into a specific value 
of s. If s = f(z) has that property, then z can be substituted 
directly for s in Eq. (1).
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Hence,

the last of which is just (1) with “z” replacing “s”.
Of course, z could be any variable, including t (time) 

before or after some arbitrary starting moment when the 
moving indicator is at some point on the curve that specifies 
s = 0, in which case ds/dt would be a velocity. Any veloc-
ity profile as a function of time would serve to specify R 
equally well.

If the parameter is time, Eq. (1) or (2) becomes

where V is a freely chosen velocity at the point along the 
curve where the derivatives are taken. Equation 2 is true for 
any value of V. If V is chosen to be 1.0 in some arbitrary 
unit, then the denominator of the expression becomes 1/R, 
which is the definition of “curvature” at the point. Any value 
of R is compatible with any value of V. There are at least 
two ways to illustrate that fact: a dimensional analysis, and 
the substitution of a few different velocity values into the 
equation.1

Dimensional analysis is a technique taught early in engi-
neering school for checking the plausibility of an equation. 
For an equation to be plausible, the dimension of the expres-
sions on the two sides of the equals sign or of an addition 
or subtraction sign must be the same. The symbols in the 
equation are described in terms of the basic units of phys-
ics, such as length (L), time (T), voltage (V), and mass (M), 
ignoring the units of measure.

In the case of (3) we need only L and T. We can substitute 
the dimensions for the components of (3) as follows: velocity 
→ L/T, acceleration → L/T2, yielding

which is independent of the units of time and, therefore, 
of velocity. Equation (3), therefore, is true for all velocities 
if it is true for any (which Eq. (3) shows that it is).
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The actual parametric equation for a curve is irrelevant. 
It matters for determining the actual radius of curvature, 
because it determines dx/ds and the other derivatives with 

respect to s. But we ask next only what happens when V is 
changed in Eq. (3). Suppose V is doubled. The numerator 
of Eq. 3 is multiplied by 8, the velocities in x and y are dou-
bled, and the accelerations in x and y are quadrupled, so the 
denominator is also multiplied by 8, leaving R unchanged. 
Again, any value of V is compatible with any value of R.

Any way the equation is examined, R and V are math-
ematically completely independent of each other, even if 
experiments suggest that in many situations they are not fac-
tually independent. The research question is why mathemati-
cal independence does not imply measured independence in 
those experimental and observational situations.

Marken and Shaffer’s paper

Marken and Shaffer (2017) relied on Gribble and Ostry 
(1996) as their starting point for their analysis. Gribble and 
Ostry had used well-known formulae to determine the veloc-
ities and radii of curvature in their studies. They measured 
the actual velocity of movement by recording x, y, and t 
values, and reported this using the Newton’s “dot” notation 
to represent time derivatives:

They then used Eq. (3) reported in the same dot notation, 
to determine the radius of curvature:

This is where Marken and Shaffer’s critical mistake 
occurs. Using the logical fallacy of taking one instance to 
be the only possible instance of a set, they noted the visual 
similarity between the expression under the square root sign 
in (4) and the expression inside the bracket of (5) and treated 
them as being the same thing. In (4), however, ẋ(dx/dt) and ẏ
(dy/dt) are values observed in an experiment and are used to 
compute the corresponding velocity, whereas in (5) they are 
arbitrary parameters, corresponding to any velocity what-
ever (including the observed velocity). Nevertheless, Marken 
and Shaffer assert that only the the velocity observed in the 
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ẋ2 + ẏ2 =
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1 I thank Dr. Bruce Abbott for these suggestions (Personal Commu-
nication 2017.11.11).
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experiment can correspond to the ẋ and ẏ in the expression 
for R.

Had the two identical expressions, that under the square 
root in (4) and that inside the bracket of the numerator of 
(5), represented only the measured velocities squared, the 
rest of the Marken and Shaffer paper would have followed. 
By falsely claiming that the measured velocity is the only 
velocity that can be inserted in (5) to produce a correct value 
for R, Marken and Shaffer “discover” instead that velocity is 
mathematically a function of a simple length.

According to them, velocity is what it was measured 
to be because only that velocity is compatible with R in 
Eq. (5). They call the denominator of 5 “D” and refer to D 
as a cross-product correction factor. They then write their 
key Eq. (6), which is true for any value of V whatever, but 
which they claim to be true only for the value of V found in 
the experiment:

Accordingly, they assert that measured values of the 
power law that depart from 1/3 are in error because they 
omit consideration of D.

But what actually is D? Here is a derivation of D in terms 
of “s”, the distance along the curve to the point where the 
derivatives are measured. Recall that x = x(s), y = y(s) is the 
parametric description of the curve in purely spatial vari-
ables in Cartesian coordinates.

Equation (7) shows that D is  V3 times an expression in 
purely spatial variables. Marken and Shaffer’s key Eq. (6), 
therefore, can be written V = R1/3·V (function of spatial vari-
ables) or V = R1/3VS. S turns out to be (1/R)1/3 or C1/3 where 
C is the usual definition of curvature, as can be seen by set-
ting V = 1.0 in (3). Equation (6), therefore, resolves to V = V, 
which is true for all V.

Implications

In this section, I consider how Eq. (6) would affect the inter-
pretation of the experimental results and the requirement for 
continuing research had Marken and Shaffer been correct, 
and had D actually been independent of V.

First, had Marken and Shaffer been correct, their finding 
would not have addressed the issue that has been the object 
of so much research: Why does the observed velocity of 
movement of a living organism along a curve so often 
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approximate a power function of the local radius of curva-
ture, and under what conditions does the power vary over 
such a wide range? These observations are made without 
reference to D, and need to be explained no matter how (or 
whether) D affects the “true” power.

Accepting the use of the “cross product correction 
factor” to produce the exact 1/3 power law would then 
translate the research question into a question of when 
and why D takes on the values it does. Marken and Shaf-
fer claimed to have solved the 1/3 power question, but did 
not address the question of the variations in the measured 
power, beyond attributing the deviations from 1/3 to vari-
ations in D, which causes the “aberration” from the truth. 
The question of why and by how much D varies in specific 
situations would still have been left open. It would have 
been the old question cast in different words.

The “aberrations”—deviations from 1/3—can be quite 
large even when the power law is observed in an exper-
iment. For example, Zago et al. (2017) quote Huh and 
Sejnowski (2015) as reporting a range of powers from 
about 0.1 to 0.66 for curves of different complexity, and 
replicated that part of the Huh and Sejnowski study with 
similar results (Fig. 2c in Zago et al. shows the power that 
relates angular velocity to curvature, which is one minus 
the power that relates the tangential velocity to radius 
of curvature). Zago et al. also show dramatic failures of 
the power law for some very simple analytic examples of 

curve-tracing.
Since the Marken and Shaffer analysis is actually not 

correct, the central research question about the value of 
the observed power might be why it has so often been near 
1/3, rather than why it varies so widely. If a rationale is 
accepted for there being a power law relationship and for 
that power often being 1/3, then deviations from 1/3 need to 
be explained. The alternative remains as it has long been, a 
general problem about why a power law is ever found and 
why the power is what it is when a power law is observed.

Omitted variable bias

Returning to the Marken-Shaffer’s paper, the authors next 
ask whether a statistical analysis based on the scattergram 
that produces the power law (a linear function in log–log 
space) will find that by including the “omitted variable” 
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D the “corrected” regression in log–log space will have a 
slope of 1/3. In this case, D, R, and random noise2 (sub-
ject and measurement variability) are the only variables 
in question. It is always true that if one includes all the 
sources of variation in an analysis one will obtain a pre-
cise result, and that is what Marken and Shaffer find by 
incorporating the covariance between D and R in addition 
to the observed effect of R.

Let us examine what they actually did. First, they say 
that their key equation V = R1/3D1/3 implies that the effect 
of D is an independent omitted variable when considering 
the relationship between V and R. Next they use a statistical 
technique that uses the normalized covariance between the 
included variable (log R) and the omitted variable (log D) 
to “correct” the power relation between V and R by add-
ing a value ∂ found using the statistical analysis. In log–log 
space the power relation is log(V) = k log(R) where k is the 
observed power, but when the omitted variable is included, 
it is log (V) = (k+∂)log(R).

However, from the derivation of D in (3), D = V3/R, so

The whole equation then becomes

 and the correction ∂ is 1/3 − k apart from a negligible con-
tribution from statistical variability (noise). In words, the 
“cross-product” correction is exactly enough to remove 
the observed effect of R on V, leaving only the tautology 
log(V) = log(V). Marken and Shaffer have found the “omitted 
variable” for predicting V, and it is V, which is entirely con-
tributed by their “cross-product” correction factor D, apart 
from the experimentally observed effect of R, for which their 
statistical analysis exactly compensates.

To prove their thesis, having found ∂ by statistical anal-
ysis, Marken and Shaffer simply leave the equation in its 
original form as log(V) = (k+∂)log(R) + 1/3 log(D), where 
(k + ∂) was found statistically to be 1/3 in every case they 
presented. Wrongly asserting that D is independent of V, 
they assign the power relation to R, instead of to D where it 
belongs. Doing so, they always find the predicted result of 
exactly 1/3 for the “true” power of the power function relat-
ing V to R. This precision of slope—always exactly 1/3—
should by itself have been a warning signal that something 
was wrong with their analysis. Experimentally measured 
relationships do not normally have such precision.

(8)1∕3 log(D) = log (V) − 1∕3 log(R)

(9)log(V) = (k + �) log(R) + log(V) − 1∕3 log(R),

Toy helicopter chase

Marken and Shaffer next propose a Perceptual Control The-
ory model (PCT: Powers 1973/2005, though they do not 
name the theory) to explain the power law that is observed 
when someone chases and finally catches a toy helicopter 
(V = cR0.22).

In my personal opinion, Perceptual Control Theory is a 
powerful foundation for psychology, and ought to be able 
to explain the power law and the contextual variation in the 
observed power, though to date it has not. In this case, how-
ever, Marken and Shaffer misuse it. The model they offer 
may or may not be a correct PCT model for what people do 
when chasing toy helicopters, but either way, it contains and 
implies nothing that would explain why the movements of 
either people or toy helicopters conform to the power law. It 
simply asks how people act to bring their perceptions of the 
helicopter’s position in x and y relative to their own posi-
tion nearer to their reference values for those perceptions 
(equality).

If a power law relation exists between the velocity of the 
helicopter or the pursuer and the radius of curvature at points 
along their respective paths (and according to their data it 
does), the reason for that relationship is not addressed by 
their model, which appears to have been introduced only 
to bring the ideas (if not the name) of Perceptual Control 
Theory to the notice of a wider public (in itself a laudable 
objective, or so I believe). It is quite possible, even likely, 
that something about the processes involved in the control 
of certain perceptions accounts for the power law and the 
variations in the observed power, but Marken and Shaffer 
do not pursue this line of enquiry.

Final comment

This comment has two main purposes. First, to show that 
the analysis offered by Marken and Shaffer (2017) is logi-
cally flawed, and second to argue that had it been correct, it 
would have had no effect on the research questions surround-
ing the power law, namely when and why the power law is 
observed, and why the power is what it is when the power 
law is observed. Marken and Shaffer seem to want to prove 
that there is nothing to be studied, because the power-law 
itself is a “Behavioural Illusion”. Whether it is or not, and 
whether their analysis is correct or not, the research ques-
tions would have been unaffected.

In PCT, “Behavioral Illusion” is a technical term, and 
that is how the authors use it. It implies that an observer 
or experimenter has interpreted the form of an observed 
effect to be a consequence of processing within the sub-
ject, whereas because of control the form of the effect is 

2 Noise almost certainly has a covariance very near zero with any 
prespecified variable (such as D and R) so its contribution to the cal-
culated slope is negligible.
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determined by properties of the subject’s environment. The 
illusion is formed in the mind of the person who makes the 
interpretation.

“Side effect” is another common term used technically 
in PCT, where it has much the same meaning as it does in 
everyday language. A side effect is an observable effect that 
is not intended by the performer, but is a consequence of the 
performer acting on the environment to achieve something 
else entirely. The power law is almost certainly a side effect 
in any of the experiments that find velocity to have a near 
power law relationship with the radius of curvature, since 
it is very unlikely that any human, let alone a fly larva, acts 
with the intention of producing a power law relationship 
between travel speed and local curvature. Perhaps, it also 
creates a behavioural illusion in the minds of some theorist. 
Marken and Shaffer’s paper sheds no light on that issue.

All in all, the initial simple mistake of taking a visual 
similarity to be a mathematical identity completely invali-
dates the rest of Marken and Shaffer’s paper. The paper, 
therefore, contributes nothing but confusion to the research 
on the power law relationship between tangential velocity 
and local radius of curvature.
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