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We hear quite a lot about models such as weather models which can be used to predict what will 
happen in the next few days, or models of colliding galaxies which show what happens to all the stars 
as they are deflected by the gravitation of all the other stars, or models of nuclear explosions, or jet 
engines, or new airplane wings or whole airplanes. I doubt, however, that many people outside of 
meteorology or engineering and physical sciences really know what a model is -- what models of the 
kind meant here can do and what they can't do. In fact many people wonder why, when we have an 
object or a phenomenon right in front of us, and piles of data about its performance, we need to model 
it at all. What can the model tell us that past experience and observing the real thing can't tell us? The 
following is a brief introduction to this subject. 
 
When we look at the behavior of a real system like an economic system, we can see what it does but we 
can't see how it works. The point of modeling, in that case, is to figure out how it works. Again, the 
question asked by a newcomer would be, "What do you mean, you can't see how it works? Aren't you 
looking right at it?" 
 
"How it works" involves more than just seeing how one part of a system is affected by other parts. Yes, 
we can see how the parts are connected together -- how the behavior of component C is affected by the 
behavior of components A and B. We can't necessarily see all the components, but usually we can see 
enough of them if the system is simple. But we still can't see how the system works. 
 
Here's an example of a system, represented by mathematical statements as engineers and scientists 
often do. This is programming language, not algebra: 
 
A := A + 0.2*B;     { replace the value of A by A + 0.2 x B) 
 
B := B -  0.2*A     {replace the value of B by B - 0.2 x A} 
 
These equations describe how the system made of variables A and B works. Every time there is an 
interaction, the measure of component B is  divided by 5 and added to the measure of A, and then the 
value of A is divided by 5  and subtracted from the value of B. This transaction just keeps happening 
over and over. What will this system do? If you start out and A and B both equal to zero, it won't do 
anything: A and B will both just keep on being zero. 
 
But suppose we set the beginning value of A to 100, with B still starting at zero. If we then plot the 
values of A and B for 32 successive calculations of both equations, we get this: 
 
 
 
 
 
 
 
 
 



 
 
 

 
 
The left-hand column of numbers represents successive values of A; the right hand column gives B. 
This is the observed behavior of the system. To the left A is plotted in red, B in green. A varies 
according to a cosine wave, and B according to a sine wave. 
 
When we model this system, we might start with the observed behavior of the variables as shown in the 
figure above. The object of the modeling would then be to figure out what sorts of relationships would 
have to hold between A and B in order for the observed behavior to occur. There are many possibilities, 
and one of them is the set of two equations above. 
 
But another way to model is to do it just as we did here. We take the real system apart and look at how 
A affects B and how B affects A and write as many equations as needed to describe all the observed and 
preferably measured relationships. We begin, in other words, by analyzing the system to see how it 
works, and we're trying to figure out what it does. Then we "run the model" -- we calculate the values 
of A and B that the equations say will exist after every iteration of the program, and we get the plot and 
the table of values in the figure above. Then we start the real system out with A and B set to the same 
initial values we used in the model, and record how it behaves. And finally, we compare the result of 
running the model with the result of doing a run with the real system, and see how well the numbers 



match up. If we have correctly measured the two relationships between A and B, and have not left out 
any variables or added any unnecessary ones, the model's behavior will match that of the real system 
very accurately. In fact, that accuracy is what tells us we have noticed the right components in the real 
system and represented them correctly in the model. 
 
The reason we need the model is evident in the two equations above. Simply measuring the 
relationships between A and B is not sufficient to give any human brain a hint as to what a system 
organized that way actually will do (unless, of course, you've seen the equations before and have been 
told what will happen). I trust that the sine and cosine waves were a surprise. 
 
I said "When we look at the behavior of a real system like an economic system, we can see what it does 
but we can't see how it works." It is also true that if we are shown just the equations that describe how 
it works, it is not very likely that we will immediately figure out what it does. If the system is complex 
with many variables and relationships among them, it is safe to say that no human brain could figure 
out what such a system would do -- except by going through this modeling process. 
 
When we look at a complex system, it is not immediately self-evident which aspects of it are important 
to its operation and which are just side-effects, perhaps interesting but not relevant to the operation of 
the system. We can see a lot of variables and a lot of relationships among them, but we don't know 
which of them to include in the model. We don't know, either, if we are seeing all the variables that 
matter, and at times we can see the variables but not how they are related. This is where the art of 
modeling becomes important. 
 
The only way to proceed is by making guesses and then checking them out. If you can open up the 
system and inspect its insides, you can see if the variables and relationships are really there. But this is 
usually not practical, especially when opening up the system changes its organization. What we end up 
with in cases like this is not a model we can prove to exist in the best possible way. All we can say is 
that if the real system were organized internally as the model is organized, it would have to behave as 
the model behaves. Not to behave that way would be to violate known laws of nature and mathematical 
truths proven long ago. 
 
We generate a correct model, or as near as we can get to that ideal, by proposing incorrect models and 
then figuring out why their behavior was different from the behavior of the real system, and fixing the 
errors. This is an iterative process which converges, sometimes rapidly and sometimes slowly, to a final 
form. We know the form is final if we find that changing anything about the model makes its imitation 
of the real system less accurate. And we know that we're on the wrong track if no changes can make the 
model's behavior resemble the real behavior at all. 
 
When we finally produce a good model that matches what the real system does, we can give it the 
ultimate test: change the conditions, and see how well the model predicts how the real behavior will 
change. And then, at last, we can use the model to predict behavior in the real system that has not yet 
been seen, under conditions we can know about only as they occur. 
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