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This article poses a controversial question: is optimal control theory useful for understanding motor behavior
or is it a misdirection? This question is becoming acute as people start to conflate internal models in motor
control and perception (Poeppel et al., 2008; Hickok et al., 2011). However, the forward models in motor
control are not the generative models used in perceptual inference. This Perspective tries to highlight the
differences between internal models in motor control and perception and asks whether optimal control is
the right way to think about things. The issues considered here may have broader implications for optimal
decision theory and Bayesian approaches to learning and behavior in general.
Introduction
Optimal control theory is currently the dominant paradigm for

understanding motor behavior in formal or computational terms.

It provides a normative model of control that allows many prob-

lems to be addressed in a coherent and principled framework

(Körding, 2007). Furthermore, it motivates the use of elegant

mathematics to solve some difficult problems that the brain

contends with (Todorov and Jordan, 2002). The basic premise

of optimal control is that optimal movements bring about valu-

able states. This means that movement can be specified with

a value function of states, provided it increases value. Despite

the compelling simplicity of this approach, I think it may bewrong

for two reasons. First, we know from the physics of flow that

motion cannot be specified by a single value function. Second,

optimal control theory assumes that movement is caused (deter-

mined) by value. However, value is an attribute of states that are

caused by movement: it is a consequence, not a cause. This

means that the real problem is to understand the acquisition

and realization of beliefs that cause movement—in other words,

to understandmotor control in terms of inference and beliefs. My

reading of the recent literature is that there is a shift from the

engineering paradigm of optimal control toward a problem

formulation in terms of Bayesian inference. However, this para-

digm shift may not be complete until we dispense with value

functions as the causal explanation of movement. This article

compares optimal control and inference and tries to show that

inference (1) complies with imperatives that apply to all biological

systems, (2) dissolves some hard problems in optimal control, (3)

provides a complete specification of control, (4) is neurobiologi-

cally plausible, and (5) accounts for action without reference to

value. While this may not be important from the point of view

of engineering, it may be important for the critical evaluation of

optimal control in neuroscience.

Recent developments in motor control theory (Tani, 2003;

Verschure et al., 2003; Tani et al., 2004; Jirsa and Kelso, 2005;

Wörgötter and Porr, 2005) emphasize sensorimotor dynamics

and perceptual inference over conventional optimal control

based on forward-inverse models (Miall et al., 1993; Wolpert

et al., 1995; Wolpert and Miall, 1996; Todorov and Jordan,

2002; Todorov, 2004; Bays and Wolpert, 2007; Liu and Todorov,

2007; Shadmehr and Krakauer, 2008; Diedrichsen et al., 2010).
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See Schaal et al. (2007) for an attempt to reconcile these

perspectives. The basic difference is that optimal control

assumes that behavior can be reduced to optimizing a value

function of states that defines what is optimal. This Perspective

focuses on active inference (Friston et al., 2009) as a formal

example of the inference approach and compares it with optimal

control to ask which of these normative approaches is the most

useful. It concludes that optimality may be better understood in

terms of prior beliefs about behavior as opposed to value func-

tions. It further shows that active inference resolves several

key issues in motor control and unifies current thinking about

Bayes-optimal behavior, perception, and learning. Interestingly,

similar conclusions follow from arguments based on the equilib-

rium point hypothesis (Feldman, 2009); namely, there is no need

for separate inverse and forward models in motor control

because the inverse model can be replaced by (Bayesian) inver-

sion of the forward model. This has no implications for Bayesian

formulations of sensorimotor processing (or learning) but has

profound implications for notions of optimality, cost functions,

and efference copy. We begin with a review of active inference

and then consider optimal control schemes.

Active Inference

Active inference is a corollary of the free-energy principle (Fris-

ton, 2010) and says that both action and perception minimize

surprise. In brief, the motivation for this minimization is to

explain how biological systems maintain their biophysical states

within bounds and thereby resist the second law of thermody-

namics—in other words, to explain how they maintain a homeo-

stasis. They can do this by minimizing the long-term average of

surprise, which implicitly minimizes the entropy of their sensory

states. Surprise is just the negative log probability of the sensory

signals encountered by an agent. In information theory, surprise

is called self information, while in statistics it is the negative log

model evidence or marginal likelihood. Although agents cannot

minimize surprise directly, they can minimize a free energy that

is always greater than surprise; hence the free-energy principle.

Under some simplifying assumptions, this free energy can be

thought of as prediction error. This means that perception can

reduce prediction errors by changing predictions (Dayan et al.,

1995; Rao and Ballard, 1999), while action reduces prediction

errors by changing sensations (Friston et al., 2010). Crucially,
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Figure 1. Forward Models in Motor Control
This is a schematic summary of the components commonly found in conventional treatments of optimal motor control. The left side of the figure shows the real
world in terms of motor plant kinetics summarized with a stochastic differential equation. The (hidden) states (x) in this equation comprise variables in extrinsic
(movement-based) and intrinsic (muscle-based) frames of reference; for example, the motion of the fingertip in Euclidean space and changes in the length of
muscle fibers. These states produce exteroceptive (e.g., visual) and proprioceptive (e.g., stretch receptor) sensations through a sensory mapping. Both the
kinetics and sensations are subject to random fluctuations (u). Sensory input (s) is used for hidden-state estimation, summarized here with an extended Kalman-
Bucy filter. This Bayesian filter operates in continuous time and updates state estimates ðbxÞ using predicted motion from a forward model and prediction error
ðs� gðbxÞÞ weighted by something called the Kalman gain (K). The prediction error is the difference between sensory input and predictions of that input, gðbxÞ,
given the state estimates. The state estimates are used for optimal control, which returns some control variables (e.g., motor commands) thatminimize future cost
or loss, specified by a cost function c(x,u), under optimal control ð~uÞ. This is alternatively referred to as an inverse model that maps from desired trajectories (in an
extrinsic frame of reference) to controlled changes in the state of muscles (in an intrinsic frame of reference). Optimal control signals are then sent to the motor
plant and (through an efference copy) to the forward model. The forward model then computes the predicted change in hidden states. These predicted changes
are integrated with sensory prediction errors by the Kalman-Bucy filter. In this scheme, the forward model can be regarded as amapping from control to changes
in hidden states. Effectively, its role is to finesse the problem of inferring states and thereby optimize control signals. This is necessary because delays and noise
on sensory signals could easily confound the implicit closed-loop control used by this scheme.
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sensations include both exteroceptive and proprioceptive

modalities. This leads to a view of perception as predictive

coding and action as the discharge of motor neurons to cancel

proprioceptive prediction errors through classical reflex arcs.

In this framework, top-down (corticospinal) projections are not

motor command signals per se but are predictions about propri-

oceptive or kinesthetic sensations.

In what follows, we will derive active inference from optimal

control theory to identify those components of optimal control

that are necessary and those that are not. Optimal control can

be cast as active inference with three simplifications: the first

formulates optimal control in terms of predictive coding, the

second replaces optimal control with motor reflex arcs, and

the third replaces value functions with prior beliefs. The first

simplification provides a unifying perspective on perception

and action and highlights the central role of Bayesian filtering

in model inversion. Furthermore, it shows that forward models
in motor control are not the generative models that are actually

inverted. The second simplification finesses the problem of

delays in descending signals and reinstates classical reflex

arcs as an integral part of motor control. Finally, the replacement

of value and cost functions with prior beliefs about movements

removes the optimal control problem completely.

Conventional Motor Control Schemes and Active
Inference
Figure 1 is based on a nice overview of conventional schemes by

Frens and Donchin (2009). This schematic tries to accommodate

the key ingredients of optimal control, ranging from early notions

about Smith predictors (Miall et al., 1993) to the more recent

synthesis of optimal control and state estimation (Todorov,

2004; Körding and Wolpert, 2004; Paulin, 2005). Figure 1 uses

a nonlinear formulation in continuous time to emphasize that

these schemes have to be realized neurobiologically. The three
Neuron 72, November 3, 2011 ª2011 Elsevier Inc. 489



Figure 2. Predictive Coding in Motor Control
This represents the same scheme as in the previous figure, but here state estimation has been absorbed into the forward model, and the prediction errors are
represented explicitly. Furthermore, we have made a distinction between exteroceptive ðεeÞ and proprioceptive ðεpÞ prediction errors reporting on hidden states
in extrinsic and intrinsic frames of reference, respectively. These prediction errors are simply the difference between the sensory input observed ðbsÞ and predicted
ðbs =gðbxÞÞ. The resulting scheme now looks like the scheme employed by predictive coding, which also rests on Bayesian (Kalman-Bucy) filtering. In this form,
top-down predictions from the forward model are compared with sensory inputs to produce bottom-up prediction errors (red connections) that enter the
Bayesian filter. Crucially, the mapping from hidden states to sensations is now part of the forward (generative) model.
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key components are (1) an inverse model or optimal control, (2)

a forward model, and (3) state estimation (see figure legend). In

brief, the optimal control computes command signals that mini-

mize some cost function, specifying the desired movement.

Although this seems straightforward, it assumes that an under-

lying optimality equation can be solved (Bellman, 1952). This is

a difficult problem with several approximate solutions, ranging

from backward induction to dynamic programming and rein-

forcement learning (Sutton and Barto, 1981). Optimal control

signals depend on the (hidden) states of the motor plant that

are estimated using sensory signals. This estimation is generally

construed as a form of Bayesian filtering, represented here with

a (continuous time) Kalman-Bucy filter. Here, filtering means

estimating hidden states from a sequence of sensory observa-

tions in a Bayes-optimal fashion. This involves supplementing

predicted changes with updates based on sensory prediction

errors. The predicted changes are the outputs of the forward

model, based on state estimates and optimal control signals.

This requires the controller to send an efference copy of its

control signals to the forward model. In this setup, the forward

model can also be regarded as finessing state estimation by

supplementing noisy (and delayed) sensory prediction errors

with predictions to provide Bayes-optimal state estimates.
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Crucially, these estimates can finesse problems incurred by

sensory delays in the exchange of signals between the central

and peripheral nervous systems.

In summary, conventional schemes rest on separate inverse

and forward models, both of which have to be learned. The

learning of the forward model corresponds to sensorimotor

learning, which is generally considered to be Bayes optimal.

Conversely, learning the inverse model requires some form of

dynamic programming or reinforcement learning and assumes

that movements can be specified with cost functions that are

supplied to the agent.

Predictive Coding and Motor Control

Figure 2 shows a minor rearrangement of the conventional

scheme to highlight its formal relationship with predictive coding.

Mathematically, the predicted changes in hidden states have

been eliminated by substituting the forward model into the state

estimation. This highlights a key point: the generative model in-

verted during state estimation comprises the mapping between

control signals and changes in hidden states and the mapping

from hidden states to sensory consequences. This means that

the forwardmodel is only part of the full generative model implicit

in these schemes. Furthermore, in Figure 2, sensory prediction

errors are represented explicitly to show how their construction
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corresponds to predictive coding. In predictive coding schemes,

top-down predictions are compared with bottom-up sensory

information to create a prediction error. Prediction errors are

then passed forward to optimize predictions of the hidden

states, shown here using the Kalman-Bucy filter. There is a large

literature on predictive coding as a model of perceptual infer-

ence, which is considered to be a biologically plausible form of

Bayesian filtering (Mumford, 1992; Rao and Ballard, 1999; Fris-

ton et al., 2006). Note that the sensory prediction errors in predic-

tive coding (Tseng et al., 2007; Wei and Körding, 2009) have

nothing to do with reward prediction errors in optimal control

and reinforcement learning (Schultz and Dickinson, 2000;

Gläscher et al., 2010). Sensory prediction errors are required

for online state estimation (inference) and optimizing (learning)

the forwardmodel. Conversely, reward prediction errors are con-

cerned solely with learning the inverse model, in terms of value

functions or cost-to-go (the path integral of cost under optimal

control). Reward prediction errors are generally invoked in the

context of reward learning; however, exactly the same errors

are required when learning the cost-to-go in motor control.

In summary, it is straightforward to cast optimal motor control

in terms of predictive coding. In this setting, the forward model is

part of a generative model mapping from control to sensory

consequences. This distinction may be trivial from the perspec-

tive of optimal control schemes, but it is important for active

inference, as we will see.

Figure 2 distinguishes between exteroceptive and propriocep-

tive prediction errors on sensations caused by (hidden) states

in extrinsic and intrinsic frames of reference. Here, the (high-

dimensional) intrinsic frame contains the state of the motor plant

(e.g., muscle fibers). Conversely, the (low-dimensional) extrinsic

frame contains movement in extrapersonal space (e.g., a head-

centered frame of reference). Intrinsic and extrinsic frames are

used in the sense of Kakei et al. (2003) and Shipp (2005): Kakei

et al. discuss movement representations in terms of the coordi-

nate transformations that begin with an ‘‘extrinsic coordinate

frame representing the spatial location of a target and end with

an intrinsic coordinate frame describing muscle activation

patterns.’’ In Feldman and Levin (1995), these frames of refer-

ence are considered in terms of physical (intrinsic) and action-

perception (extrinsic) frames. The distinction is important

because optimal control has to invert a mapping from (1) control

signals to consequences in an intrinsic (muscle-based) frame

and then (2) from an intrinsic to an extrinsic (movement-based)

frame in which desired movement is defined. In short, the

inverse mapping comprises two parts: from an extrinsic to an

intrinsic frame and from an intrinsic frame to control signals.

The second part of the inversion is easy because there is a simple

relationship between motor neuron activity and its conse-

quences (if an alpha motor neuron fires, its extrafusal muscle

fibers contract). However, the first part makes inversion difficult

because there aremany intrinsic degrees of freedom that interact

to produce a trajectory in extrinsic coordinates. In what follows,

we will separate the easy (intrinsic) and hard (extrinsic) inverse

problems and then dispense with the hard problem.

Reflex Arcs and the Easy Inverse Problem

Recall that the motivation for state estimation in optimal control

is to finesse problems with noisy and delayed sensory input.
However, there are also delays in descending control signals

from the motor cortex. These can be discounted if we consider

classical reflex arcs to be solving the easy (intrinsic) inverse

problem. In other words, if motor neurons are wired to suppress

proprioceptive prediction errors in the dorsal horn of the spinal

cord, they effectively implement an inverse model, mapping

from desired sensory consequences to causes in intrinsic

(muscle-based) coordinates. In this simplification of conven-

tional schemes, descending motor commands become top-

down predictions of proprioceptive sensations conveyed by

primary and secondary sensory afferents. Note that this is not

an open-loop scheme, because top-down predictions are part

of a closed loop that optimizes estimates of hidden states using

bottom-up (e.g., visual) sensations.

This simplification speaks to the recursive and hierarchical

anatomy of the motor system (Grafton and Hamilton, 2007;

Shipp, 2005) and acknowledges the role of nested, closed-

loop dynamics at both peripheral and central levels. In this

scheme, optimal control signals prescribe action indirectly

through predictions about desired proprioceptive conse-

quences. This means that their role is to provide predictions

about changes in hidden states that minimize cost. These

predictions (from the forward model in Figure 1) require optimal

control to solve the hard (extrinsic) inverse problem. However,

this is no longer necessary because control signals are not

required in intrinsic coordinates (because the intrinsic conse-

quences of extrinsic predictions drive action). It is therefore suffi-

cient to provide the forward model with predictions about

desired trajectories in an extrinsic frame of reference. This

means that we do not have to solve the hard problem of working

out how (intrinsic) muscle contractions produce (extrinsic) move-

ments; we only have to solve the forward problem of how

(extrinsic) movements stretch (intrinsic) muscles. In other words,

the inverse model (optimal control) is unnecessary. This brings

us to active inference.

Active Inference, Cost, and Priors

Active inference eschews the hard inverse problem by replacing

optimal control signals that specify muscle movements (in an

intrinsic frame) with prior beliefs about limb trajectories (in an

extrinsic frame). The resulting scheme is shown in Figure 3,

where the forward model now maps from prior beliefs about

desired trajectories to their sensory consequences. This model

is formally identical to hierarchical models used for perceptual

inference. Here, motor commands become descending predic-

tions of proprioceptive sensations, while their exteroceptive

homologs become corollary discharges (see left panel of

Figure 4). In short, with one simple manipulation, we have elimi-

nated the need for optimal control and the intractable solution of

the Bellman optimality equation. This changes the normative

model of motor control fundamentally: optimal control relies on

an inverse model to provide control signals that prescribe trajec-

tories that are optimal in relation to some cost function. In active

inference, the trajectories are Bayes optimal (in relation to

sensory evidence or free energy), and there is no inverse model

or cost function. This is important because Bayes-optimal trajec-

tories do not necessarily have well-defined cost functions (see

below). In short, active inference is consistent with Bayesian

perception and sensorimotor learning of generative forward
Neuron 72, November 3, 2011 ª2011 Elsevier Inc. 491



Figure 3. Active Inference
This figure represents the final simplification of the predictive coding scheme of the previous figure. Here, cost functions have been replaced by prior beliefs
about (desired) trajectories in an extrinsic frame of reference. These beliefs enter the Bayesian filter to guide predictions of sensory inputs. Proprioceptive
predictions are fulfilled in the periphery through classical motor reflex arcs, while predictions of exteroceptive inputs correspond to corollary discharge and are an
integral part of perceptual inference. Note that optimal control now reduces to simply suppressing proprioceptive prediction errors. This is active inference.
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models and removes the problem of computing the cost-to-go.

This is summarized nicely in Feldman (2009): ‘‘Efference copy-

based and internal model theories consider a problem of

a mapping between desired movements and associated motor

commands. It is assumed that this problem is solved by pre-

programming of the requisite commands with the help of inverse

and forward internal models. In contrast, by utilizing frames of

reference as action-producing tools, the system does not need

to program these commands.’’

It should be noted that there is no free lunch when replacing

cost functions with prior beliefs. It is well known that the compu-

tational complexity of a problem is not reducedwhen formulating

it as an inference problem; see Littman et al. (2001) for a treat-

ment of this in the setting of stochastic satisfiability problems.

This fact is evidenced by the many procedures that are found

in both approximate optimal control and Bayesian inference.

Examples here include minimization of Kullback-Leibler diver-

gences (Todorov, 2008; Kappen et al., 2009) and expectation

maximization (Toussaint and Storkey, 2006), both of which can

be formulated as minimizing free energy (Neal and Hinton,

1998). In one sense, active inference replaces a hard optimal

control problem with a hard inference problem. Having said

this, the nice thing about active inference is that these problems

can be solved in a simple and neurobiologically plausible

fashion: by effectively equipping predictive coding schemes
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with classical reflex arcs (see Figure 4 and Mumford, 1992; Fris-

ton, 2008). Perhaps the most definitive argument in favor of

active inference, as a normative model of motor control, is that

prior beliefs about behavior emerge naturally as top-down or

empirical priors during hierarchical perceptual inference. This

contrasts with optimal control, which, at the end of the day, still

has to explain how cost functions themselves are optimized. In

short, active inference eliminates the homunculus implicit in

cost functions.

Active Inference and Optimal Control
In this section, we compare and contrast active inference with

optimal control at a number of different levels. We will start at

the level of implementation and frames of reference and then

turn to relationships at the theoretical level, in terms of the duality

between cost functions and priors and between optimal control

and inference.

In conventional schemes, the intrinsic frame of reference

contains the causes (changes inmuscle length), while the conse-

quences (changes in limb position) are in extrinsic coordinates.

Active inference turns this on its head and regards prior beliefs

that cause movement to exist in an extrinsic frame, while the

consequences unfold in intrinsic coordinates. In what sense

are these perspectives equivalent? Intuitively, one can either re-

gard a limb as being pulled by a muscle or the muscle as being



Figure 4. Hierarchical Message Passing in the Brain
This figure illustrates the sort of neuronal architecture that might implement active inference. The left panel shows a schematic of predictive coding schemes in
which Bayesian filtering is implemented by neuronal message passing between superficial (red) and deep (black) pyramidal cells encoding prediction errors and
conditional predictions or estimates, respectively (Mumford, 1992). In these predictive coding schemes, top-down predictions conveyed by backward
connections are compared with state estimates at the lower level to form a prediction error. This prediction error is then passed forward to update the state
estimates in a Bayes-optimal fashion. In active inference, this scheme is simply extended to include classical reflex arcs, where proprioceptive prediction errors
drive alpha motor neurons in the ventral horn of the spinal cord to elicit extrafusal muscle contractions and changes in primary sensory afferents from muscle
spindles. These suppress prediction errors encoded byRenshaw cells. The right panel presents a schematic of prediction error and state estimation units at some
arbitrary level in a cortical hierarchy. In this example, there is a distinction between hidden states ðxxÞ that model dynamics and hidden causes ðxvÞ that mediate
the influence of one level on the level below. The equations correspond to a generalized Bayesian filtering or predictive coding in generalized coordinates of
motion, as described in (Friston, 2008). In this hierarchical form, f ðiÞ := fðxðiÞx ; x

ðiÞ
v Þ corresponds to the equations of motion at the ith level, while gðiÞ :=gðxðiÞx ; x

ðiÞ
v Þ links

levels. These equations constitute the agent’s prior beliefs. D is a derivative operator, and PðiÞ represents precision or inverse variance. These equations were
used for the simulations presented in the next figure.
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pushed by the limb. However, from the point of view of hidden

states (muscle length and limb position), the two scenarios are

identical. In other words, the semantics of push versus pull are

purely heuristic; the underlying trajectories (in both frames of

reference) are simply solutions to the appropriate Euler-

Lagrange equations of motion. In active inference, movements

caused by changes inmuscle length aremodeled asmovements

that cause changes in muscle length; cf. the Passive Motion

Paradigm (Mussa Ivaldi et al., 1988). Intuitively, this makes sense

in that we are aware of movements, not muscles.

Can every movement specified by a cost function also be

specified by a prior belief? An equivalence between cost func-

tions and prior beliefs can be established by appealing to the

complete class theorem (Brown, 1981; Robert, 1992). This states

that any behavior is Bayes optimal for at least one prior belief and

cost function. However, this pair is not necessarily unique, which

means that one can exchange prior beliefs and cost functions to

produce the same motor behavior. This is exploited in active

inference to provide a biologically plausible solution to the motor

control problem that can be regarded as a predictive coding with

motor reflexes. This scheme can also be regarded as an instance
of the equilibrium point hypothesis (Feldman and Levin, 1995), in

which fixed points are replaced by trajectories that are specified

by prior beliefs about motion. In active inference, these are

actually empirical priors that are continuously updated during

the perceptual inversion of hierarchical generative models. In

this setting, the optimal trajectory is just the movement that

has the greatest posterior probability, given the current context.

See Figure 4.

Optimal Control as Inference

The duality between optimal control and estimation has been

clearly articulated by Todorov (2008) and dates back to the

inception of Kalman filtering. This equivalence was exploited

by early proposals to replace cost with an auxiliary random

variable conditioned on a desired observation. This means that

minimizing cost is equivalent to maximizing the likelihood of

desired observations (Cooper, 1988; Pearl, 1988; Shachter,

1988). Subsequent work focused on efficient methods to solve

the ensuing inference problem (Jensen et al., 1994; Zhang,

1998). Later, Dayan and Hinton (1997) proposed an expectation

maximization algorithm for reinforcement learning in the case of

immediate rewards, while Toussaint and Storkey (2006) cast the
Neuron 72, November 3, 2011 ª2011 Elsevier Inc. 493
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problem of computing optimal policies as a likelihood maximiza-

tion problem. More recently, variational Bayesian procedures

have been applied to optimal decision-making problems in

Markov decision processes (Botvinick and An, 2008; Hoffman

et al., 2009; Toussaint et al., 2008) and stochastic optimal control

(Mitter and Newton, 2003; Kappen, 2005; van den Broek et al.,

2008; Rawlik et al., 2010). These approaches appeal to varia-

tional techniques to provide efficient and computationally

tractable solutions, in particular by formulating the problem in

terms of Kullback-Leibler minimization (Kappen, 2005) and

path integrals of cost functions using the Feynman-Kac formula

(Theodorou et al., 2010; Braun et al., 2011). So what does active

inference bring to the table?

Prior Beliefs or Cost Functions?

Active inference goes beyond noting a formal equivalence

between optimal control and Bayesian inference. It considers

optimal control a special case of inference in the sense that there

are policies that can be specified by priors that cannot be spec-

ified by cost functions. This follows from the fundamental lemma

of variational calculus, which says that that a policy or trajectory

has both curl-free and divergence-free components, which do

and do not change value, respectively. This means that value

can only specify the curl-free part of a policy. A policy or motion

that is curl free is said to have detailed balance and can be

expressed as the gradient of a Lyapunov or value function (Ao,

2004). The implication is that only prior beliefs can prescribe

divergence-free motion of the sort required to walk or write.

This sort of motion is also called solenoidal, like stirring a cup

of coffee, and cannot be specified with a cost function, because

every part of the trajectory is equally valuable. So why is this not

a problem for active inference?

The difference between active inference and optimal control

lies in the definition of value or its complement, cost-to-go. In

optimal control, value is the path integral of a cost function,

whereas in active inference, value is simply the log probability

or sojourn time a particular state is occupied under prior beliefs

about motion. This sort of value does not require cost functions.

Technically speaking, in stochastic optimal control, action is

prescribed by value, which requires the solution of something

called the Kolmogorov backward equation (Theodorou et al.,

2010; Braun et al., 2011). This equation is integrated from the

future to the present, starting with a cost function over future

or terminal states. Conversely, in active inference, action is

prescribed directly by prior beliefs, and value is determined by

the stationary solution of the Kolmogorov forward equation (Fris-

ton, 2010; Friston and Ao, 2011). See Mitter and Newton (2003)

for a discussion of forward and inverse Bayes formulae and their

variational characterizations in terms of optimality. The forward

type of optimality in active inference is closely related to the

optimality introduced recently for the control of stochastic

nonlinear problems with solenoidal or periodic motion, such as

in locomotion, in which ‘‘the stationary state-distribution of the

optimally-controlled process’’ is approximated (Tassa et al.,

2011). In short, optimal motion is determined by prior beliefs,

which endow states with a particular value; however, value is

a consequence, not a cause, of optimal behavior. The crucial

thing here is that cost-to-go and surprise are the same thing.

This ensures that maximizing the long-term average of value is
494 Neuron 72, November 3, 2011 ª2011 Elsevier Inc.
the same as minimizing the entropy of sensory states. This is

mandated by the free-energy principle and is the same as maxi-

mizing Bayesian-model evidence. Both value and surprise are

optimized by Bayesian inference, but neither depends on cost

functions. We will see an example of cost-free optimality below.

In summary, the tenet of optimal control lies in the reduction of

optimal motion to flow on a value function, like the downhill flow

of water. Conversely, in active inference, flow is specified directly

in terms of equations of motion that constitute prior beliefs,

like patterns of wind flow. The essential difference is that prior

beliefs can include solenoidal flow (e.g., atmospheric circulation,

or the Coriolis Effect) that cannot be specified with (scalar) value

functions. Having said this, I do not want to overstate the short-

comings of optimal control in specifying limit cycle or solenoidal

motion; for example, there are compelling examples in the

recent literature on simulated walking (Wang et al., 2009). These

schemes employ simultaneous trajectory optimization, which

uses an explicit representation of the trajectory (as opposed to

sequential algorithms that only represent the action sequence)

(Kameswaran and Biegler, 2006). This generalization replaces

cost functions of a particular state with a cost function over

trajectories. Effectively, this converts the problem of optimizing

a sequence of movements into optimizing a value function on

a high-dimensional state space, whose coordinates are states

at different times. A point in this space encodes a sequence or

trajectory. However, this begs the question of how one would

specify an itinerant sequence of sequences, without invoking

even higher-dimensional representations of state space. This is

accommodated easily in inference, in which prior beliefs about

sequences of sequences are encoded directly by hierarchies

of attractors or central pattern generators (Kiebel et al., 2008).

Another generalization of optimal control is to consider value

functions that change with time (Todorov and Jordan, 2002).

Intuitively, this would be like guiding a donkey with a moving

carrot (as opposed to placing the carrot at a fixed location and

hoping the donkey finds it). However, this just replaces questions

about the donkey with questions about how the carrot moves. In

active inference, the carrot can be regarded as prior beliefs (that

specify the desired trajectory), while the donkey is compelled by

posterior beliefs and classical reflexes to follow the carrot.

Efference Copy and Corollary Discharge

Finally, active inference provides a particular interpretation of

efference copy (EC) and corollary discharge that predicts the

sensory consequences of descending motor signals. In active

inference, descending signals are in themselves predictions of

sensory consequences (cf. corollary discharge). In this sense,

every backward connection in the brain (that conveys top-

down predictions) can be regarded as corollary discharge,

reporting the predictions of some sensorimotor construct. The

fact that high-level (amodal) representations have both motor

and sensory consequences highlights the intimate relationship

between action and perception. Note that efference copy per

se disappears in active inference. This may not be too surprising,

given the assertion that the ‘‘solutions to the three classical prob-

lems of action and perception (the posture-movement problem,

problems of kinesthesia, and visual space constancy) offered by

the EC theory in particular or by the internal model theory in

general are physiologically unfeasible’’ (Feldman, 2009).



Figure 5. Active Inference and Action Observation
This schematic summarizes the results of the simulations of action observation reported in Friston et al. (2011). The left panel pictures the brain as a forward or
generative model of itinerant movement trajectories (based on a Lotka-Volterra attractor, whose states are shown as a function of time in colored lines). This
model furnishes predictions about visual and proprioceptive inputs, which prescribe movement through reflex arcs at the level of the spinal cord (inset on the
lower left). The variables have the same meaning as in the previous figures. The mapping between attractor dynamics and proprioceptive consequences is
modeled with Newtonian mechanics on a two-jointed arm whose extremity (red ball) is drawn to a target location (green ball) by an imaginary spring. The location
of the target is prescribed (in an extrinsic frame of reference) by the currently active state in the attractor dynamics. These attractor dynamics and the mapping to
an extrinsic (movement) frame of reference constitute the agent’s prior beliefs. The ensuing posterior beliefs are entrained by visual and proprioceptive sensations
by prediction errors during the process of inference, as summarized in the previous figure. The resulting sequence of movements was configured to resemble
handwriting and is shown as a function of location over time on the lower right (as thick gray lines). The red dots on these trajectories signify when a particular
neuron or neuronal population encoding one of the hidden attractor states was active during action (left) and observation of the same action (right). More
precisely, the dots indicate when responses exceeded half themaximum activity and are shown as a function of limb position. The left panel shows the responses
during action and illustrates both a place-cell-like selectivity and directional selectivity for movement in an extrinsic frame of reference. The equivalent results on
the right were obtained by presenting the same visual information to the agent but removing proprioceptive sensations. This can be considered to be a simulation
of action observation and a mirror of neuron-like activity. This is an interesting example from the point of view of the current discussion, because it highlights the
intimate relationship between perceptual inference and action.
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Discussion
The arguments above are presented in a rather abstract way,

without substantiating the assumptions or background on which

active inference rests. This omission is probably best addressed

by reference to work showing that cost functions and optimal

policies can be formulated as prior beliefs in the context of

active inference (Friston et al., 2009) and that the same scheme

can be extended to include heuristic policies (Gigerenzer and

Gaissmaier, 2011) formulated using dynamical systems theory

(Friston, 2010). In the motor domain, active inference provides

a plausible account of retinal stabilization, oculomotor reflexes,

saccadic eye movements, cued reaching, sensorimotor integra-

tion, and the learning of autonomous behavior (Friston et al.,

2010). In this context, Bayes-optimal sensorimotor integration

(Körding and Wolpert, 2004) is an emergent property that is

mandated by absorbing action into perceptual inference. This

is illustrated nicely when simulating action observation. An

example is provided in Figure 5, in which the same scheme is

used to generate autonomous (handwriting) movements and to

recognize the same movements when performed by another
agent. The equations used in this example can be found in Fris-

ton et al. (2011). This example was chosen to show that the same

(neuronal) representations play the role of prior beliefs during the

prosecution of an action and recognizing the same action when

observed. In this sense, the very existence ofmirror neurons (that

respond selectively to actions and observation of the same

action) are an empirical testament to the duality between opti-

mality and inference. It would be interesting to see whether

this simulation of the mirror neuron system could be reproduced

using optimal control theory (Miall, 2003). This is a slightly disin-

genuous challenge because optimal control cannot reproduce

handwriting as a result of requisite motion being solenoidal. As

noted above, this is a shortcoming of optimal control when it

comes to itinerant (sequential and wandering) movements. In

short, the compete class theorem suggests that any optimal

trajectory specified by a cost function can be specified by a prior

belief but that not every optimal trajectory can be specified by

a cost function.

The issues addressed in this review are largely theoretical in

nature and speak to formal or computational modeling of motor
Neuron 72, November 3, 2011 ª2011 Elsevier Inc. 495
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control: specifically, should these models be based on optimal

control theory or optimal Bayesian inference. However, the

answer has some profound neurobiological implications. For

example, if descending motor commands are top-down predic-

tions, then descending motor efferents should share physiolog-

ical and anatomical characteristics with top-down or backward

connections in other systems. Indeed, descending projections

from primary motor cortex share many features with backward

connections in visual cortex: they originate in infragranular layers

and target cells expressing NMDA receptors. This is somewhat

paradoxical, from the orthodox perspective (Shipp, 2005),

because backward modulatory characteristics (Sherman and

Guillery, 1998) would not be expected of drivingmotor command

signals. This apparent paradox is resolved by active inference,

which also provides a principled explanation for why the motor

cortex is agranular (R. Adams, personal communication).

There are clearly many operational issues that attend the

distinction between optimal control and active inference. For

example, how does active inference compensate for altered

limb dynamics or external perturbations? A treatment of this

can be found in Friston et al. (2010), in which movement trajecto-

ries are shown to be remarkably robust to perturbations, both to

forces on a limb and fluctuations in motor gain. Heuristically,

active inference counters unpredicted forces immediately (to

suppress prediction errors on force); in contrast, optimal control

can only adjust its (state-dependent) control signals after unpre-

dicted forces change the state of the motor plant. Another key

area we have not considered is the learning or acquisition of prior

beliefs. In optimal control, the value function is learned, whereas

in active inference, the problem reduces to learning the parame-

ters (of the equations of motion) that constitute prior beliefs. This

is a standard problem in inference and corresponds to percep-

tual learning. For example, the agent depicted in Figure 5 could

optimize its parameters during action observation (with respect

to free energy) and use them to reproduce observed behavior

during action. Note that this form of imitation learning reduces

to pure perceptual learning and eschews the inverse optimal

control problem of inferring the value function by observing an

optimally controlled system (Dvijotham and Todorov, 2010).

From the point of view of active inference, cost functions

represent one particular way of specifying prior beliefs about

the future. It is interesting to speculate that their formal simplicity

makes them an attractive candidate for representations of goals

at a cognitive level. In other words, in the conscious control of

behavior, we may represent cost functions explicitly. This is

implicit in the use of optimal decision theory to describe planning

and choices (Botvinick and An, 2008; Gläscher et al., 2010).

However, the arguments presented here suggest that cost

functions per se are not an inherent part of motor control,

because they can only specify the component of movement

trajectories with detailed balance.

Conclusion
In summary, active inference is appealing for several reasons.

First, it dispenses with optimal control (in the sense of solving

optimality equations and learning cost-to-go). This is important

because there are no biologically plausible schemes that can

handle nonlinear (and divergence-free) control problems in
496 Neuron 72, November 3, 2011 ª2011 Elsevier Inc.
continuous time. Second, it finesses problems with delayed

control signals in classical formulations. In other words, de-

scending corticospinal signals are predictions that are fulfilled

at the peripheral level using fast closed-loop mechanisms (i.e.,

peripheral reflex arcs). These predictions can anticipate delays

if they are part of the generative model. Finally, active inference

resolves Bernstein’s problem (Bernstein, 1967). Bernstein’s

problem rests on the many-to-one mapping from the intrinsic

frame to the extrinsic frame. This induces indeterminacy in

producing a particular trajectory. The resulting, ill-posed nature

of the inverse problem means that one has to invoke auxiliary

objective functions like minimum jerk to provide unique solu-

tions. In active inference, these problems are resolved by prior

beliefs about the trajectory (that may include minimal jerk) that

uniquely determine the (intrinsic) consequences of (extrinsic)

movements.

A forthcoming review of sensorimotor learning (Wolpert et al.,

2011) highlights three key challenges for motor control theory,

which can be addressed in light of the above discussion:

� ‘‘It is not clear whether the learning models developed will

generalize to tasks such as tying shoelaces or learning to

skateboard.’’ Optimal control theory will fail here because

these behaviors (like handwriting) entail solenoidal motion.

� ‘‘To date, relative few principles from the study of biological

sensorimotor control have found their way into robotics.’’

This may be because the solution of the optimal equations

(when they exist) is intractable (or notoriously slow) in real-

istic settings. It is notable that compelling reproductions of

animate movements in robotics (Tani, 2003) can be cast as

active inference, in which the inverse model (optimal

control) is replaced by model inversion.

� ‘‘Although significant progress has beenmade in computa-

tional sensorimotor control, the field has been less

successful in linking computational models to neurobiolog-

ical models of control.’’ This may be because inverse and

forward models do not exist, because there is no optimal

controller. An important corollary of this is that optimal

control schemes require both the forward model and

inverse model to be learned (through use-dependent

learning and value learning, respectively). In active infer-

ence, there is only use-dependent learning of the genera-

tive model.

This essay poses a provocative question about the usefulness

of optimal control, inverse models, and cost functions in motor

control theory. I half expect an answer of the form, ‘‘What you

say is interesting, but you have overlooked one fundamental

problem,’’ or ‘‘Optimal control theory is necessary to explain

the following empirical observation.’’ Perhaps having posed

this question, people will provide answers that will change or

nuance my conclusions.
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